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1 Preliminaries  

 

Learning Outcome 

After completing this Chapter, students are expected to: 

 define a physical quantity, unit of measurement and uncertainty in measurement. 

 identify significant figures in measurements and calculations. 

 define a unit vector and describe its purpose. 

 distinguish between the vector components and the scalar components of a vector. 

 apply dimensional analysis to determine the relation between different quantities. 

 Solve problems related to the addition, components, magnitude and direction of vectors.   

Introduction 

This chapter introduces measurements of physical quantities and the uncertainties inherent to 
measurements. Accurate and precise measurements are important in the study of and research in 
physics. Since traditional ways of measurements do not give accurate and precise values, we use 
standard measurement techniques in science. For example, instead of saying that a string is 5 
armlengths, we can specify its length using a standard measuring tape and say that the string is 2 
meters long. In this chapter we use a standard known as the International System of Units (SI).  

How do we know that our measurements are accurate and precise? What we know for sure is that 
all measurements have some degree of error or uncertainty. No measurement is exact! A 
measurement is only an estimation of the true value. Some factors that cause measurement 
uncertainty and determining the amount of uncertainty will be discussed in this chapter. 

In physics experiments, measurements of different physical quantities are taken to verify or discover 
any relationship between them. Dimensional analysis is covered in this chapter to give students 
some ideas on how to check the dimensional consistency of equations and how new equation can be 
discovered. Also, geometric and algebraic methods of adding and resolving vectors will be discussed. 

 

1.1 Physical Quantities and Units of Measurement 

Learning Outcome 

After completing this section, students are expected to: 

 define a physical quantity and a unit of measurement. 

 describe what measurement means in science. 

 distinguish between quantities and units. 

 solve problems related to units of measurement. 

1.1.1 Quantities and Units 

A quantity is a definite or indefinite amount or size of something.  
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Some of the quantities above are physical and some are non-physical. 

1.1.1.1 Non-physical quantities 

Non-physical quantities (qualitative) such as love, hate, fear and hope are not a concern in physics 
studies and experiments and cannot be measured in the sense described below. However, there are 
research disciplines, such as psychology, that study and quantify such quantities as fear of exam or 
exam anxiety. 

1.1.1.2 A physical quantity 

A physical quantity is a quantity that can be measured by defining its units of measurement or using 
a measuring instrument. A physical quantity is always expressed in terms of a numerical value 
(magnitude) and a unit. 

Physical quantity = (numerical value) unit 

 

Exercise 

Give other examples of physical and non-physical quantities.  

 

1.1.2 A unit of measurement 

A unit of measurement (defined and adopted by convention) is a standard by means of which the 
amount of a physical quantity is expressed. In the first example above the unit is “m/s” and the 
speed of sound is expressed as containing 331 such units. In the second example, the unit is “kg” and 
the mass of a box is expressed a containing 5 such units. 

Experiments in physics involve taking measurements of quantities and calculating some results. For 
measurements and calculations to be meaningful, units must be introduced. Physics without units is 
meaningless. 

Examples 

Thing Amount  Type 

Desire  Strong  Indefinite 
Mass of box Heavy  Indefinite 
Mass of box 5 kg Definite  
Love  Deep  Indefinite  
Height of a person Tall  Indefinite  
Height of a person 2 m Definite  

 

Examples 

1. speed of sound = 331 m/s,  

2. mass of box = 5 kg 

3. radius of hydrogen atom = 53 pm 
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Exercises 

1. Can your heart beat be used as a unit of time? Discuss. 

2. Can your arm length or your step be used as units of length? Discuss. 

 

1.1.3 Measurement 

A measurement is defined as the process of finding the size or amount of a physical quantity using 
the standard unit for that quantity (see below for standard units). 

Exercises 

1. Is every act of finding the amount/size of a physical quantity a measurement? Consider the 

following: 

a. Counting students in a class, the amount of Birr you have, the number of stars in the sky; 

b. Measuring the length of a table using your arm; 

c. Estimating the distance between two towns; 

d. Comparing the length of a meter stick with your height. 

1.1.4 Fundamental and Derived Units 

Physical quantities and their units are of two types: Fundamental (or Basic) and Derived.  

1.1.4.1 Fundamental (basic) quantities and units 

In the SI system, there are seven basic physical quantities and units, listed in Table 1-1 (below). 

 

Table 1-1 The seven fundamental quantities and their SI units. 

Basic physical quantity Symbol for quantity Basic unit Symbol for unit 

Length   metre   

Mass   kilogram    

Time   second   
Electric current   ampere   

Temperature   kelvin   
Amount of substance   mole     

Luminous intensity    candela    

Some unit symbols are in upper-case letter because they are named after scientists; for example, the 
unit of temperature (kelvin, K) reminds us Lord Kelvin who contributed a lot in thermodynamics. 
Note that the full names of the units are all in lower-case letters. 

 

Units of Time, Length, and Mass 

To give the student some insight into how standards are adopted we briefly discuss the three 
fundamental units of mechanics; the second, the meter and the kilogram. See your lab manual for 
more information about standard units of measurement. 
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The Second 

The SI unit for time, the second (abbreviated s) was first defined as 1/86,400 of a mean solar day. 
Since the solar day is getting longer due to the gradual slowing of the Earth’s rotation, a new 
standard of the second was adopted in terms of a non-varying physical phenomenon for greater 
accuracy. One such phenomenon is the steady vibrations of Cesium atoms, and these vibrations can 
be readily observed and counted. In 1967 the second was redefined as the time required for 
9,192,631,770 of these vibrations (See https://physlibretexts.org). 

 

The Meter 

The SI unit for length, the meter (abbreviated m) was first defined as 1/10,000,000 of the distance 
from the equator to the North Pole. The meter was redefined more accurately to be the distance 
between two engraved lines on a platinum-iridium bar now kept near Paris. It was again redefined 
even more accurately in terms of the wavelength of light, so 1 m became 1,650,763.73 wavelengths 
of orange light emitted by krypton atoms. The present definition of the meter is the distance light 
travels in a vacuum in 1/299,792,458 of a second (See https://physlibretexts.org). The length of the 
meter will change if the speed of light is someday measured with greater accuracy. 

 

The Kilogram 

The SI unit for mass, the kilogram (abbreviated kg) was previously defined to be the mass of a 
platinum-iridium cylinder kept near Paris with exact replicas reserved at different parts of the globe. 
Since airborne contaminants slightly change the platinum-iridium mass over time, the scientific 
community adopted a more stable definition of the kilogram in May 2019. The kilogram is now 
defined in terms of the second, the meter, and Planck's constant, h (a quantum mechanical value 
that relates a photon's energy to its frequency).  

 

Exercises 

1. Why do scientists keep redefining standards? 
2. How are the standards for the other SI units defined (Table 1.1)? See the references given at the 

end of the course outline. 

 

1.1.4.2 Derived quantities 

Derived quantities are combinations of two or more basic quantities. For example, volume is 
obtained by combining three lengths; speed is derived from length and time. Similarly, derived units 
are made by a combination of two or more of the fundamental units. The unit of volume is meter 
cubed (  ); the unit of speed is meter per second (   ). Table 1-2 (below). shows some examples 
of derived quantities and the corresponding derived units. 
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 Table 1-2  Some derived quantities and their SI units 

Derived quantity Unit Symbol  

Area square meter       
Volume cubic meter       
Frequency Hertz        
Density kilogram per cubic metre             
Force Newton          
Work, energy Joule                

Power Watt                 
Velocity (speed) metre per second           

 

Note that in the rightmost column the derived units are expressed as powers of the fundamental 
units. These powers are called the dimensions of the physical quantity in the base units. The next 
sub-section discusses dimensional analysis. 

Exercise 

Express the following derived units in terms of the fundamental SI units given in Table 1-1 (above): 

The unit of acceleration  The unit of moment of inertia 
The unit of linear momentum  The unit of charge (coulomb, C) 
The unit of angular speed  The unit of potential difference (vlot, V) 
The unit of torque  The unit of magnetic field (tesla, T) 

1.1.5 Dimension and dimensional analysis 

Every physical quantity can be expressed in terms of some powers of the fundamental SI quantities 
as shown in the rightmost column of Table 1-2 (above). These powers are called the dimensions of 
the physical quantity in question. The square brackets     stand for “dimension of”. For example,  

 

       or     means “dimension of mass” and we write             .  

               means “dimension of length” and we write                

             means “dimension of time” and we write              

            means dimension of electric current and so on. 

 

In mechanics, a derived physical quantity   can be expressed as 
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Dimensional analysis is useful in deriving new formulas or checking existing formulas apart from 
dimensionless factors that may exist in the formulas.  

 

 

In general, the dimension of any physical quantity can be written as                for some 
powers  , ,c, , , , and  . We can write the dimensions of a length in this form with     and the 
remaining six powers all set equal to zero:                  . For a dimensionless quantity all 
seven powers are zero. Dimensionless quantities pure numbers. Table 1-3 (below) displays the 
symbols for all fundamental quantities. 

 

 

Examples 

1. The dimensions of volume:   𝑉   𝑙𝑒𝑛𝑔𝑡  ×  𝑤𝑖𝑑𝑡  ×   𝑒𝑖𝑔 𝑡  𝐿  

 Volume has a dimension of 3 in length 

 

2. The dimensions of density:  𝜌   𝑚   𝑉  𝑀𝐿   

 Density has a dimension of 1 in mass and a dimension of -3 in length 

 

3. The dimensions of force:   𝐹   𝑚 ×  𝑎  𝑀𝐿𝑇   

 Force is said to have a dimension of 1 in mass, a dimension of 1 in length and a 
dimension of -2 in time 

 

4. The dimensions of energy:  𝐸   𝐹 ×  𝑠  𝑀𝐿 𝑇   

 Energy has dimensions of 1, 2 and -2 in mass, length and time, respectively  

𝐹𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑚𝑎𝑠𝑠 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 

 𝐹𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   𝑓𝑜𝑟𝑐𝑒  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑀𝐿𝑇  𝐿  𝑀𝐿 𝑇   

 𝑚𝑎𝑠𝑠 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑞𝑢𝑎𝑟𝑒𝑑   𝑚𝑎𝑠𝑠  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦   𝑀 
𝐿

𝑇
 
 

 𝑀𝐿 𝑇   

Examples 

1. Verify that the following relation is correct apart from dimensionless factors: 𝑠  1

2
𝑎𝑡  

Solution  

  𝑠  𝐿 

  𝑎𝑡    𝑎  𝑡   𝐿𝑇  𝑇  𝐿 

 Therefore,  𝑠   𝑎𝑡   

 The given equation is dimensionally correct. 

 

2. Show that the following equation is dimensionally consistent. 

Solution 

The given equation is dimensionally correct. 
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Table 1-3 Fundamental Quantities and Their Dimensions 

Base Quantity Symbol for Dimension 

Length  L  

Mass  M  

Time  T  

Current  I  

Thermodynamic temperature  Θ  

Amount of substance  N  

Luminous intensity  J 

 

Exercises 

Following the example above, check that the following equations are dimensionally correct. 

 

1.      
      2.   

 2

 
 

3.       
 

 
    4.         

5.         6.         5    

7.        8.      

 

1.1.6 SI Prefixes and scientific notation 

The International System of Units (SI) is a decimal system in which units are divided or multiplied by 
10 to give smaller or larger units. For example, it doesn’t make sense to give the length of a football 
field as 120000 millimetres or as 0.120 kilometer. A more appropriate unit is the metre. Telling 
people that the football field is 120 meters long gives them a better idea of the actual length of the 
field. It would be equally unsuitable to give the thickness of a human hair as 0.000 000 1 kilometer. 
In this case, the appropriate unit is the millimetre; Saying that the human hair is 1 millimetre thick 
would give people a far better idea of the actual thickness of the hair.   
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Table 1-4 lists the SI Prefixes in order with their names and symbols 
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Table 1-4  SI Prefixes 

Prefix Symbol Base Unit Multiplier In Words Exponential 

yotta  Y 1,000,000,000,000,000,000,000,000 septillion      

zetta Z  1,000,000,000,000,000,000,000 sextillion      

exa E 1,000,000,000,000,000,000 quintillion      

peta P 1,000,000,000,000,000 quadrillion      

tera T 1,000,000,000,000 trillion      

giga G 1,000,000,000 billion     

mega M 1,000,000 million     

kilo k 1,000 thousand     

hecto h 100 hundred     

deca da 10 ten     

(base unit) 1 one     

deci d 0.1 tenth      

centi c 0.01 hundredth      

milli m 0.001 thousandth      

micro μ 0.000001 millionth      

nano n 0.000000001 billionth      

pico p 0.000000000001 trillionth       

femto f 0.000000000000001 quadrillionth       

atto a 0.000000000000000001 quintillionth       

zepto z 0.000000000000000000001 sextillionth       

yocto y 0.000000000000000000000001 septillionth       

 

Similarly, it is not convenient to write the electron mass as 0.0000000000000000000000000000091 
kg or the diameter of the observable universe as 880000000000000000000000000 m. We rather use 
a scientific notation to express too big or too small numbers: 

 

                9  ×          

                                8 8 ×        
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Exercises 

1. Convert the following numbers into scientific notation: 

a. 27 000 000  b. 101 
c. 007 12 d. 81 250 000 000 
e. 821 f. 000 002 05 

 

2. Write the following numbers using SI prefixes: 

a. 5.80 x     b. 2.52 x      

c. 6.32 x      d. 6.10 x       

e. 8.56 x     f. 6.25 x       

g. 2.30 x      h. 1.5 x      

 

3. Write the standard form of 

a. speed of light in a vacuum = 298 000 000km/s 

b. one light year = 10 000 000 000 000km 

 

  

Examples 

1. Some illustrations of the use of Prefixes: 

a. Radius of hydrogen atom = 53 pm (picometers). 

b. Distance between Earth and Sun = 149.5 Gm (gigameters). 

c. Mass of electron = 0.000 91 yg (yoctograms). 

d. The mass of the earth = 5983 Yg (yottagrams). 

 

2. Write the following physical quantities in scientific notation and using SI prefixes. 

3270 g, 0.128 m, 65 000 000 W, 0.000056 s 

Solution 

Given Physical Quantity Scientific Notation Using SI Prefixes 
3270 g 3  7 ×        3.27 kg 
0.128 m    8 ×        128 mm 
65 000 000 W 6 5 ×   7 W 65 MW 
0.000056 s 5 6 ×      s 56 μs  
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1.2 Uncertainty in Measurement and Significant Figures 

Learning Outcome 

After completing this section, students are expected to: 

 define measurement uncertainty, 

 distinguish between error and uncertainty, 

 explain the difference between accuracy and precision, 

 give order of magnitude estimation of physical quantities 

 identify significant digits in a measurement value, 

 analyse errors in data and report results,  

 

1.2.1 Uncertainty in measurement 

If a teacher overcounts the number of students in a class, she could easily correct the mistake by 
recounting the students two or more times. Miscounting is an example of error or a mistake that 
could easily be removed. On the other hand, an error made in physics measurements can never be 
removed no matter how the measurement is taken or how often it is repeated. Measurement errors 
in physics mean more than simple human mistakes; they are uncertainties inherent to the physical 
measurements. 

Although the terms “error” and “uncertainty” are used interchangeably, they are a bit different. 

 

1.2.1.1 Error 

Error is defined as the difference between an observed value and a true value. 

                                    

 

The “observed” value is either a result of direct measurement or a calculated value using other 
measured values in a formula. The “true” value exists but is unknown. Then how can one determine 
the error in measurements? The goal of measurement is to estimate the true value of a physical 
constant using experimental methods. 

 

 

Figure 1-1 A schematic representation of error 

 

 

Quantity values 

True value Observed 
Error 



General Physics Module Phys 1011 AAU 

  

Preliminaries 17 

 

1.2.1.2 Uncertainty  

Uncertainty is a quantification of the doubt about the measurement result. This quantification gives 
the range of values within which the true value is believed to lie with some level of confidence. 
Uncertainty is determined by statistical analysis of many values of measurement.  

 

 

 

Figure 1-2  Uncertainty shows the area around the average value 
where the true value of the measurement is likely to be found 

 

Suppose the result of length measurement is (20.1 ± 0.1) cm. This means that the experimenter 
believes the true value to be closest to 20.1 cm but it could have been anywhere between 20.0 cm 
and 20.2 cm. 

 

1.2.2 Sources and Types of Error 

Measurement errors can arise from three possible origins: the measuring device, the measurement 
procedure, and the measured quantity itself. Usually the largest of these errors will determine the 
uncertainty in the data. Errors can be divided into two types: Systematic and Random errors 

Systematic errors arise from procedures, instruments, bias or ignorance. Systematic errors bias 
every measurement in the same direction, causing your measurement to consistently be higher or 
lower than the accepted value. Example: An ammeter with zero error reads higher or lower values of 
current. Systematic errors can be estimated from understanding the techniques and instrumentation 
used in an observation. 

 

Figure 1-3  The zero error of an ammeter is an example of systematic error 

 

Of TRUE value (usually the MEAN) 
TRUE value lies here 

𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕    𝒃𝒆𝒔𝒕 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ±  𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚  𝒖𝒏𝒊𝒕 𝒐𝒇 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 

uncertainty 

best estimate 

uncertainty 

Measurement 

values 



General Physics Module Phys 1011 AAU 

  

Preliminaries 18 

 

Random errors are uncontrollable differences between measurements because of equipment, 
environment or other sources, no matter how well designed and calibrated the tools are. Random 
errors are unbiased small variations that have both positive and negative values. In general, making 
multiple measurements and averaging can reduce the effect of random errors. 

 

Exercise 

 Identify the systematic and random errors in the list below: 

a. A metre ruler with worn ends 

b. A dial instrument with a needle that is not properly zeroed 

c. Human reaction time that is always either too late or too early 

d. Fluctuations in the readings of an instrument 

e. Parallax error (human error) as shown in the diagram below 

 

 

Figure 1-4  Examples of parallax error in (a) measuring length and (b) measuring volume. 

 

1.2.3 Accuracy vs. Precision 

In physics, there are two distinct and independent aspects of measurement related to uncertainties: 

 

Accuracy refers to the closeness of a measured value to the ‘true’ (standard or known) value. It 
describes how well we eliminate systematic error. Example: if you measure the weight of a given 
substance as 3.2 kg, but the actual or known weight is 10 kg, then your measurement is not 
accurate. In this case, your measurement is not close to the known value. 

 

Precision refers to the closeness of repeated measurements to each other without referring to the 
‘true’ value. It describes how well we suppress random errors. Example: if you weigh an object five 
times, and get 3.2 kg each time, then your measurement is very precise. The precision of a 
measuring tool is related to the size of its measurement increments. The smaller the measurement 
increment, the more precise the tool. 
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Precision and accuracy are independent. A measurement can be precise but inaccurate, or accurate 
but imprecise as illustrated by the several independent trials of shooting at a bullseye target in 
Figure 1-5 (below). 

 

 

Figure 1-5  Illustration of the difference between accuracy and precision. 

 

Exercise 

Given the standard value of g = 9.80665   s  and the following sets of five measurement values, 
write “YES” or “NO” in response to the question of accuracy and precision and discuss your 
responses.  

   Set of g values Accurate? Precise? 

1 g = {9.800, 9.806, 9.807, 9.810, 9.811}   

2 g = {10, 4, 15, 6, 32}   

3 g = {9.80665, 10, 9.8, 9.8067, 9.81}   

4 g = {19.80, 19.806, 19.807, 19.810, 19.799}   

 

Errors can also be classified as absolute and relative: 

1.2.3.1 Absolute error  

Absolute error is the difference between the measured value and the accepted value. 

               |                               | 

1.2.3.2 Relative error  

Relative error is a fractional error defined as 

                
              

              
 

1.2.3.3 Percentage error 

Percentage error is relative error expressed as a percentage: 

                               ×      
 



General Physics Module Phys 1011 AAU 

  

Preliminaries 20 

 

 

 

Exercises  

1. A measure of the length of two rods using a metre ruler gives: 

                ±   ×        

                ±   ×       

a. Find the relative errors in the two measurements. 

b. Find the percentage errors in the two measurements. 

 

2. A student measured the length of a laboratory table as 4.5 m accurate to 0.1 of a meter. 
Find the absolute, relative and percentage errors in this measurement. 

3. The values below are results of a road test for a new car. 

 

Speed Speedometer correction (km/h) 

Indicated 60 80 100 111 

Actual 59 78 96 104 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟  |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒   𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒| 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟  |9 8    9 8 665| 𝑚 𝑠  
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟      335 𝑚 𝑠  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟  
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 

    335

9 8 665
 3 4 ×      

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 ×      3 4 ×     ×         3  

Examples 

1. Suppose the accepted value of gravity is 𝑔  9 8 665 𝑚 𝑠 . If the measured value is 
𝑔  9 8  𝑚 𝑠 , what is the absolute error? 

Solution  

 

2. What is the relative (percentage) error in example 1 above? 

Solution 

 

3. A digital ammeter gives the value of a current as 456mA. The accuracy or absolute 
uncertainty of the meter is 1mA. How should the reading be expressed? as (456 ± 1) mA. 

Solution 

For this reading, 1mA is the absolute error and 456 mA is the estimated value. Therefore, 
the reading should be expressed as (456 ± 1) mA. 
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(a) Find the relative (or fractional) error at an actual speed of 59 km/h. 

(b) What is the percentage error at 59 km/h? 

(c) Find the relative (or fractional) error at an actual speed of 96 km/h. 

(d) What is the percentage error at 96 km/h? 

(e) Draw a graph of the relative error versus the speed of the car. 

(f) what is the relation of the relative errors to the speed of the car?   

 

1.2.4 Quantifying Uncertainties 

We will now apply some basic statistics to quantify random errors.  

1.2.4.1 The mean 

Suppose a quantity   is measured   times. A sample of the measured values is (           ). We 
want the mean,  , of the population from which such a data set was randomly drawn. We can 
approximate   with the sample mean (average) of this particular set of N data points: 

   ̅  
 

 
∑   

 
     

Note that  ̅ is not the true mean of the population, because we only measured a small subset of the 
population. But it is our best guess and, statistically, it is an unbiased predictor of the true mean  . 

1.2.4.2 The standard deviation 

The precision of the value of   is determined by the sample standard deviation,   ,defined as  

   √∑      ̅ 2 
  1

   
   

The square of the sample standard deviation is called the sample variance,   
 . The sample standard 

deviation is our best estimate of the true statistical standard deviation    of the population from 
which the measurements were randomly drawn. 

1.2.4.3 The standard error (uncertainty) 

If we do not care about the standard deviation of a single measurement   but, rather, how well we 
can rely on the mean value,  ̅, then we should use the standard error or standard deviation of the 

mean   ̅. This is found by dividing the sample standard deviation by √ : 

  ̅  
  

√ 
  

1.2.4.4 Reporting Data 

Under normal circumstances, the best estimate of a measured value   predicted from a set of 
measurements      is reported as    ̅ ±   ̅, where the standard error is now the statistical 
uncertainty      ̅. The uncertainties should be given to the same number of decimal places as the 
measured values. Example:    ̅ ±   ̅   434   ±    6  nm. 
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Exercise 

The temperature of air is measured at different times of a certain day and the following set of 
readings was recorded. 

Rec. No. 1 2 3 4 5 6 7 8 9 10 
T ( ) 16 19 18 16 17 19 20 15 17 13 

Find (a) the mean temperature of the day, (b) the standard deviation of the temperature data, (c) 
the standard error and (d) the final result in the form    ̅ ±   . 

𝑠𝑔   
∑  𝑔𝑖  𝑔̅  𝑁
𝑖  

𝑁   
  

 7  

39
 8 33 c𝑚 𝑠  

Example: g revisited 

Suppose, in a physics lab session, students measured the acceleration due to gravity (g) 40 times. 
How well is the value of g determined by these measurements? 

Values of g measured in cm/s2 

961 972 979 983 986 965 976 979 966 975 

981 985 987 991 983 984 974 981 989 996 

968 978 979 984 987 993 990 984 970 977 

981 984 992 994 988 985 974 975 971 980 

 

Solution  

Mean of g:  𝑔̅  
∑ 𝑔𝑖
𝑁
𝑖 1

𝑁
 

    7

  
 98  cm/s2 

Standard deviation 

First find the deviations of the values of g from their mean value of 981 cm/s2 

-20 -9 -2 2 5 -16 -5 -2 -15 -6 

0 4 6 10 2 3 -7 0 8 15 

-13 -3 -2 3 6 12 9 3 -11 -4 

0 3 11 13 7 4 -7 -6 -10 -1 

 

Then find the sum of squared deviations and divide it by the number of values minus 1. 
Finally, take the square root to determine the standard deviation: 

The standard error (uncertainty in the measurement of g) 

𝑠𝑔̅  
𝑠𝑔

√𝑁
 

    

√  
   3  cm/s2   

Therefore, the students should report the value of g as  

𝑔  𝑔̅ ± 𝑠𝑔̅     98 ±    𝑐𝑚 𝑠 . 
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1.2.5 Error Propagation 

Measurement uncertainties propagate through calculations that depend on several uncertain 
quantities. Suppose that you have two quantities   and  , each with an uncertainty    and   , 
respectively. What is the uncertainty of the quantity  ±   or          ⁄  ? The rules for 
uncertainty propagation assume that the errors    and    are uncorrelated, i.e., they are 
completely random. 

1. Multiplication by an exact number: If     , then        

2. Addition or subtraction by an exact number: If      , then       

3. Addition or subtraction: If    ±  , then    √            

4. Multiplication or division: If      or      , then 
  

 
 √(

  

 
)
 
 (

  

 
)
 

 

5. Power: If     , then 
  

 
  

  

 
 

 

𝛿𝑙  √ 𝛿𝑙  
   𝛿𝑙  

  √   5      5     7 mm 

𝑙      9 ±   7   mm 

𝐴𝑟𝑒𝑎   𝑙𝑒𝑛𝑔𝑡  ×  𝑤𝑖𝑑𝑡  

𝐴    64   ±    7𝑚𝑚  ×  5 63 ±     5𝑚𝑚  

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎  𝐴  𝑙 × 𝑤   64  × 5 63   36  446 

𝛿𝐴

𝐴
   

𝛿𝑙

𝑙
 
 

  
𝛿𝑤

𝑤
 
 

   
  7

64  
 
 

  
   5

5 63
 
 

     88 

𝛿𝐴  36  446 ×     88     4 

Examples 

1. A measurement of the thickness of a pack of cards gives the value 𝑙   3  3 ±   5  mm. 
Some cards are removed and the thickness is measured again, giving the value 
𝑙      4 ±   5  mm. what is the thickness of the removed cards together? 

Solution  

The estimated thickness of the removed cards together is 𝑙  3  3     4     9. Then by 
rule 3, 

 

2. A piece of paper is measured and found to be 5.63 ± 0.15mm wide and 64.2 ± 0.7mm 
long. What is the area of this piece of paper? 

Solution 

Data: length = 64.2 ± 0.77mm and width = 5.63 ± 0.15mm 

First work out the answer by just using the numbers, forgetting the errors 

Then, by rule 4: 
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1.2.6 Significant Figures 

Significant figures (sig. figs) are those digits in a measurement that carry meaning and contribute to 
its precision. Significant figures express the precision of a measuring tool. Here are the rules for 
identifying significant figures in a measurement: 

 

1. All non-zero figures are significant:  

25.4 has three significant figures. 

2. All zeros between non-zeros are significant:  

30.08 has four significant figures. 

3. Zeros to the right of a non-zero figure but to the left of the decimal point are not significant 
(unless specified with a bar):  

109 000 has three significant figures. 

4. Zeros to the right of a decimal point but to the left of a non-zero figure are not significant:  

0.050, only the last zero is significant. 

5. Zeros to the right of the decimal point and following a non-zero figure are significant:  

304.50 have five significant figures. 

 

 

𝐴   36  4 ±    4  𝑚𝑚  

Report the area as 

The final answer should have as many decimal places as the data with least number of 
decimal places.  

 

Example 

Determine the number of sig. figs. For the following numbers 

21000  3250000  42210000 
0.0012  469   1786 
1.0  0.00843  508.6 
0.18  0.234  0.6780 
67  65.0  5.060 

Solution  

Number sig. figs. Number sig. figs. Number sig. figs. 

21000 Two (rule 3) 3250000 Three (rule 3) 42210000 Four (rule 3) 
0.0012 Two (rule 4) 469  Three (rule 1) 1786 Four (rule 1) 
1.0 Two (rule 5) 0.00843 Three (rule 4) 508.6 Four (rule 2) 
0.18 Two (rule 4) 0.234 Three (rule 4) 0.6780 Four (rule 4) 
67 Two (rule 1) 65.0 Three (rule 5) 5.060 Four (rule 5) 
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Exercises 

1. Find the number of sig. figs for the following numbers 

90000 70000000.0 84.10000 
10082 0.0025 3008000 
70000000 0.00008914 0.000339 

2. Which are significant: Trailing zeros or leading zeros? 

 

When performing calculations, we must be careful about significant figures. When adding, 
subtracting, multiplying or dividing numbers, the answer should not be more precise than the 
number with the least number of significant figures.  

 

 

Exercises 

1. The following values are part of a set of experimental data: 618.5 cm and 1450.6mm. Write 
the sum of these values correct to the right number of significant figures. 

2. The following values are part of a set of experimental data: 34.7cm and 19.65mm. How 
many significant figures would be present in the product and ratio of these two figures? 

 

 64 68? ?   47     6    ? ?    6     

Examples 

1. Find the difference  64 68    47   

Solution  

Put a question mark at all doubtful places and do the calculation: 

In this calculation, the least number of sig. figs. is five so the final answer must have five sig. 
figs 

2. Evaluate the product   345 × 3 56   8 348   8 35. 

Solution  

Multiply the numbers using question marks at all doubtful places. 

 

 

The final answer has three sig. figs because the least number of sig. figs. in the operation is three 
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1.2.7 Order of magnitude 

The order of magnitude of a number is the value of the number rounded to the nearest power of ten 
(no significant figures). It is used if you need to give only an indication of how large or small a 
number is, and only the power of ten is given. It also indicates that the accuracy of the measurement 
is limited. 

 

 

 

Exercises 

1. What is the order of magnitude of the gravitational constant? 

2. What is the order of magnitude of the distance between the Earth and the Sun? 

3. What is the order of magnitude of a charge of 100nC? 

4. What is the order of magnitude of the electron charge? 

5. What is the order of magnitude of the mass of a proton? 

 

1.3 Vectors: Addition, Components, Magnitude and Direction 

Learning Outcome 

After completing this section, students are expected to: 

 describe the difference between vector and scalar quantities. 

 recognise quantities as either scalars or vectors. 

 Use geometric methods to add vectors and find their magnitudes and directions in a plane. 

 use algebraic method to find resultant of vectors and find components of vectors. 

 define a unit vector. 

 solve problems about vectors. 

 

Examples 

1. The velocity of light is 3  ×       s. The order of magnitude of this velocity is    . 

2. The order of magnitude of 142 particles is    . Since 142 in scientific notation is 
  4 ×    . 

3. The order of magnitude for 10kV would be given as    . 

4. The mean free path of a nitrogen molecule at room temperature and one atmosphere is 
59 nm. The order of magnitude is     . 

5. The number of molecules in a mole is of the order of     . 

6. Planck’s constant is of the order of      . 
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1.3.1 Vectors 

Vectors are physical quantities such as force, velocity, acceleration and momentum that are 
expressed in terms of both magnitude (with a unit) and direction. Geometrically, they are 
represented by arrows in two or three dimensions because arrows have both characteristics of a 
vector: magnitude and direction. 

Note that quantities with a sense of direction such as angles and time are not vectors, because they 
do not obey the law of parallelogram. A physical quantity is a genuine vector if it adds to another 
vector according to the law of parallelogram. That is true vectors obey the law of parallelogram. 
Finite angles are physical quantities with a sense of direction (clockwise or counterclockwise), but 
they are not vectors because they violate the law of parallelogram. 

Physical quantities such as length, volume, mass, density, temperature and time can be expressed in 
terms of magnitude or size alone (together with a unit). These are called scalar quantities. 

Exercise 

Categorize each quantity as being either a vector or a scalar. 

Quantity  Category  Quantity Category  Quantity Category 

5 m   256 bytes   9.8 m/s2, up  

30 m/sec, East   4000 Calories   10 μC  

5 km, North   5 kg, down   45° South of East  

20 degrees Celsius   5 N, down   45° clockwise  

 

1.3.2 Vector notation 

There are many ways of writing the symbol of a vector. Vectors are denoted by bold-face letter or a 
letter with an arrow above it. For example, 

 

Bold face:    Arrow above:   ⃗  Harpoon above:   ⃑ Overbar:    ̅̅ ̅̅  

 

 

1.3.3 Geometrical representation of vectors 

Vectors are geometrically represented by drawing arrows. The length of the arrow gives the 
magnitude of the vector and the arrowhead indicates direction of the vector. Figure 1-6(c) (below) 

shows that a ruler is used to measure the magnitude of the vector   ⃗⃗⃗⃗ ⃗⃗  as 10.3 units, defining 1 cm as 
1 unit. If, for example, the vector is a displacement vector, 10.3 cm on the ruler may represent 13.3 
km on the ground; if it is a force vector, 10.3 cm may represent 10.3 N; if it is a velocity vector 10.3 
cm may represent 10.3 m/s and so on. A protractor is used to specify the direction of the vector, 
which is shown to be 29.1o North of East.  

 



General Physics Module Phys 1011 AAU 

  

Preliminaries 28 

 

 

Figure 1-6  A geometrical representation of a vector. (a) the displacement vector from the tent to 

the park is represented by the arrow AB. (b) this displacement is denoted by  ⃗⃗⃗. (c) The magnitude 
and direction of a vector are determined using a ruler and a protractor. 

Figure 1-6(a)(above) clearly shows the difference between distance (scalar) and displacement 
(vector) between the tent and the camp.  The distance between the tent and the camp depends on 
the route taken while the displacement from the tent to the camp has a fixed magnitude and a 
particular direction. 

1.3.4 Equality of Two Vectors 

Two vectors are equal if they have the same magnitude and direction. In Figure 1-7 (below), vectors 

 ⃗ and  ⃗⃗ are equal whereas vectors  ⃗ and  ⃗⃗⃗ are not equal eventhough they have the same 
magnitude. Note that two vectors need not be located at the same point in space to be equal. 
Moving a vector from one point in space to another doesn’t change its magnitude or its direction. 

 

 

Figure 1-7  The vectors  ⃗⃗⃗,  ⃗⃗⃗ and  ⃗⃗⃗ are equal vectors. Although vector  ⃗⃗⃗ and vector  ⃗⃗⃗ 
have the same magnitude they are not equal vectors as they have different directions. 

Exercises 

1. Using a ruler and a protractor determine the magnitude and direction of the vector in Figure 
1-6(b). 

2. Using a ruler and a protractor check that three of the vectors in Figure 1-7 are equal vectors. 
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1.3.5 Adding and Subtracting Vectors geometrically 

Two vectors can be added geometrically using the tail-to-head method (also called the triangle rule) 
or the parallelogram rule.  

 

1.3.5.1 Tail-to-head method (triangle rule) 

To add vectors, place the tail of one vector at the head of the other vector.  The resultant is obtained 
by joining the tail of the first vector to the head of the second vector. Figure 1-8 (b) and (c) show that 
vector addition is commutative. The tail-to-head method can be applied to three or more vectors 
(Figure 1-9).  

 

For any two vectors, 

 

 ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗            ⃗⃗⃗   ⃗⃗⃗                 ⃗⃗⃗   ⃗⃗⃗                

 

 
Figure 1-8  Head-to-tail method of vector addition. Geometry shows that  ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗. 

 

Figure 1-9  Tail-to-head method for drawing the resultant of four vectors 
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1.3.5.2 Parallelogram Rule 

Alternatively, place both vectors with their tails joined. Construct a parallelogram taking the two 
vectors as the two adjacent sides. The diagonal is the resultant vector (Figure 1-10). 

 
Figure 1-10  Parallelogram rule of vector addition 

 

Subtraction of vectors is the same as adding the negative of the second vector to the first as shown 
in Figure 1-11. 

 

 

Figure 1-11  Geometric subtraction of vectors,  ⃗   ⃗⃗   ⃗     ⃗⃗ . 

 

If the sum of two vectors is zero, one is said to be the negative of the other. That is, if      , 
then     . 
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Example 

Three displacement vectors 𝐴, 𝐵⃗⃗, and 𝐶 are specified by their magnitudes in centimeters and by 
their direction angles with a horizontal line as shown. Choose a convenient scale and use a ruler 

and a protractor to find the following vector sums: (a) 𝑅⃗⃗  𝐴  𝐵⃗⃗, (b) 𝐷⃗⃗⃗  𝐴  𝐵⃗⃗, and (c) 

𝑆  𝐴  3𝐵⃗⃗  𝐶. For parts (a) and (b) we use the parallelogram rule. For (c) we use the tail-to-
head method. 

 

 

Solution 

For parts (a) and (b): R = 5.8 cm and 𝜃𝑅 ≈  °; D = 16.2 cm and 𝜃𝐷  49 3° 

 

 

For part (C) 
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Exercises 

1. Using a ruler and protractor, find the sum and difference of the following vectors. Draw the 
vectors to scale, say 1 cm = 2 units of the given vector. 

a.  ⃗⃗⃗  5     s   and   ⃗⃗⃗  8              s   

b.  ⃗⃗  4   s   s   and   ⃗⃗⃗  8   s        

c.  ⃗⃗⃗  4        ,   ⃗⃗  4     s  and  ⃗⃗⃗  8         

2. Using the three displacement vectors  ⃗⃗,  ⃗ and  ⃗ in the example above, choose a convenient 

scale, and use a ruler and a protractor to find vectors (a)  ⃗   ⃗   ⃗, (b)  ⃗   ⃗   ⃗ and (c) 

 ⃗    ⃗    ⃗⃗   ⃗. Use the tail-to-head method. 

3. Discuss why the following equality does not hold:  ⃗   ⃗⃗     , where A and B without 
arrows represent magnitudes only. 

 

1.3.6 Components of a vector 

One way of finding the components of a vector uses the rectangular coordinate system as shown in 

Figure 1-12. When we know the scalar components    and     of a vector  ⃗, we can find its 

magnitude   and its direction angle   . The direction angle—or direction, for short—is the angle the 
vector forms with the positive direction on the x-axis. The angle    is measured in the 
counterclockwise direction from the +x-axis to the vector. 

 

Figure 1-12  Components of a vector. 

 

The vector  ⃗ can be expressed as the sum of two vectors,  ⃗   and  ⃗ , which stand perpendicular to 

each other in the rectangular (aka Cartesian) coordinate system. That is, 

 ⃗   ⃗   ⃗  

 ⃗  and  ⃗  are vector components along the x-axis and y-axis respectively. Applying simple 

trigonometry, we find the scalar components of the vector  ⃗ in terms of its magnitude ( ) and 
direction angle (  ):  

      s   ,     s      

Given the rectangular components of a vector, we can also determine the magnitude and direction 
of any vector by the (inverse) equations: 

 

𝑨𝒙  𝑨𝐜𝐨𝐬𝜽𝑨 

𝑨⃗⃗⃗ 𝑨𝒚  𝑨𝐬𝐢𝐧𝜽𝑨 

𝜽𝑨  

y  

x  0
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  √  
    

            (
  

  
) 

Scalar components of a vector  ⃗ may be positive or negative depending on the quadrant in which 
the vector lies. Vectors in the first quadrant (I) have both scalar components positive and vectors in 
the third quadrant (III) have both scalar components negative. The calculated angle θ in the first 
quadrant is identical to the direction angle   . The calculated angle θ in the IV quadrant is identical 
to the direction angle   . For vectors in quadrants II and III, the direction angle of a vector is given by 
      8 ° counterclockwise from the positive x-axis. In Figure 1-13 all possibilities are shown. 

 

 

Figure 1-13  Generally, the components of a vector can be positive and negative scalar 
components. In quadrants I and IV the direction angle of a vector is the same as calculator 
outputs; in quadrants II and III the direction angle is 180° plus the calculated values. 

 

Example 
 
Find the magnitude and direction of each of the four vectors given below. 
 

Vector x-component y-component 

A 3 units 4 units 

B -6 units 8 units 

C -9 units -12 units 

D 12 units -16 units 
 

Solution 
Magnitude and direction of vector A 

  √  
    

  √3  4  5 units  

       (
  

  
)       (

 

 
)  53  3°  [correct calculator answer] 

Vector A is in the first quadrant at an angle of 53.13° counterclockwise from +x-axis. 
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Magnitude and direction of vector B 
 

  √  
    

  √  6   8     units   

       (
  

  
)       (

 

  
)   53  3°  [incorrect calculator answer] 

 
The inverse tangent function of a calculator returns values between -90° and +90°, so the answer 
will be acceptable only for the first and fourth quadrants. To get the right angles for vectors in the 
second or third quadrant, add 180° to the calculator result. 
 
 So, the correct angle for vector B is    53  3   8    6 87° counterclockwise from +x-axis 
(second quadrant) 
 
Magnitude and direction of vector C 
 

  √  
    

  √  9           5 units   

       (
  

  
)       (

   

  
)  53  3°  [incorrect calculator answer] 

 
The correct angle for vector C is   53  3   8   33  3° counterclockwise from +x-axis (third 
quadrant) 
 
Magnitude and direction of vector D 
 

  √  
    

  √       6      units   

       (
  

  
)       (

   

  
)   53  3°  [correct calculator answer]  

Vector D is in the fourth quadrant at an angle of 53.13° clockwise from +x-axis. 
 
Note that the calculator answer is correct only half of the time. 
 
A ball is shot at an angle of 35° with the horizontal. If the initial velocity of the ball has a 
magnitude of 50 m/s find its horizontal (x) and vertical (y) components. 
 
Solution 

Horizontal component:       s  5 ×   s 35°  4      
Vertical component:     s    5 × s  35°   9     

 

Exercises 

1. The magnitude of vector  ⃗ is 35.0 units and points in the direction 325° counter-clockwise 
from the positive x-axis. Calculate the x- and y-components of this vector. 

2. A boy ran 3 blocks west, 5 blocks north. Find the magnitude and direction of his resultant 
displacement with reference to East.  

3. The rectangular components of four vectors are given below. Find the magnitude and 
direction of each vector. 
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Vector x-component y-component 

A 3 units -4 units 

B 5 units 1 unit 

C -2 units -3 units 

D -12 units 6 units 

 

1.3.7 Adding and Subtracting Vectors Algebraically 

Algebraic addition and subtraction of vectors makes use of the components of the vectors. The 
algebraic sum of two or more vectors is obtained by adding x and y components separately. So, if 

 ⃗⃗   ⃗   ⃗⃗, then the components of the resultant vector are: 

         

         

 

Similarly, if  ⃗⃗⃗   ⃗   ⃗⃗, then the components of difference vector are  

         

         

 

Remember: Algebraic addition and subtraction of vectors are carried out component by component. 

 

Example 
 
On a certain day, a student goes to school by first walking 2.0 km 45.0° north of east from her home 
to her ant’s home to drop a message. Then she walks 0.8 km in a direction 60.0° south of east of 
north where her school is located. (a) Determine the components of the student’s displacements in 
the first and second parts of her walk. (b) Determine the components of her total displacement for 
the trip from home to school. 
 
Solution 
 

Let  ⃗ and  ⃗⃗ be the first and second displacements. Their components are: 
 
      s       s45°    4          s     8   s  6 °    4     
    s       s  45°    4        s      8 s    6 °     69    
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The components of the total displacement 

 ⃗⃗ are: 
 

           4    4    8    
 

           4    69    7    

 
The diagram shows the student’s 
displacements. Compare the calculated 
values of the components to the 
corresponding components on the 
diagram. 
 

 

Exercises 

1. The magnitude and direction (with respect to the +x axis) of two force vectors are   50 N, 
30°) and B (25 N, -60°). Find  

a. The components of  ⃗ and  ⃗⃗, 

b. The components of the sum  ⃗   ⃗   ⃗⃗ and difference  ⃗⃗⃗   ⃗⃗   ⃗. 

 

2. Find the magnitude and direction of the vectors whose xy-components are 

a. (7 m, 11 m) and  b. (24 m/s, -15 m/s) 

 

  

1.3.8 Unit Vectors 

A convenient way of analysing vectors is to first describe them in terms of unit vectors. 

1.3.8.1 The unit vector defined 

Definition 1: A unit vector is a vector of magnitude one.  

So, if  ̂ denotes a unit vector, then | ̂|   . 

Definition 2: A unit vector in the direction of any vector  ⃗ is given by 

 ̂  
 ⃗

 
,   where   | ⃗| 

Definition 2 is consistent with Definition 1 because 

| ̂ |  |
 ⃗

 
|  

 

 
   

 

 

𝑨⃗⃗⃗ 

𝒖 𝑨 
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Using Definition 2, we can write any vector  ⃗ in terms of its magnitude and parallel unit vector: 

 

 

 

1.3.8.2 Unit vectors of the rectangular xy-coordinate system 

In the rectangular    coordinate system, unit vectors are defined in the directions of    and   . 
The unit vector in the direction of    is denoted by   ̂and the unit vector in the direction of    is 
denoted by  ̂. Unit vectors provide a convenient notation in vector algebra.  

In a rectangular (Cartesian) xy-coordinate system in a plane (Figure 1-14, below), the vector 

component  ⃗  of a vector  ⃗ can be described by the scalar component (  ) and the unit vector  :̂ 

 ⃗      ̂

Similarly, the vector component in the y direction is described as 

 ⃗     ̂ 

Where (     ) are the scalar components of the vector  ⃗. 

 

Figure 1-14 Vector components and scalar components of a vector in the Cartesian coordinate 

system. The vector components  ⃗  and  ⃗  are multiples of the unit vectors, the multiplying factors 

being the scalar components    and   . 

 

Suppose  ⃗ and  ⃗⃗ are any two vectors in the rectangular coordinate system given by 

 ⃗     ̂     ̂  and  ⃗⃗     ̂      ̂

The sum or difference,  ⃗ ±  ⃗⃗, is carried out component-by-component as shown below: 
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 ⃗   ⃗   ⃗⃗  (   ̂     ̂)  (   ̂     ̂)          ̂  (     ) ̂ 

 ⃗⃗⃗   ⃗   ⃗⃗  (   ̂     ̂)  (   ̂     ̂)          ̂  (     ) ̂ 

 

Similarly, the scalar multiple of a vector  ⃗     ̂     ̂ can also be found by multiplying each 

component of  ⃗ by the given scalar. So, if  ⃗⃗     ⃗, then  

 ⃗⃗     ⃗   (   ̂     ̂ )        ̂  (   ) ̂     ̂     ,̂ 

where        and        

 

Exercises 

1. Given  ⃗  4 ̂      ̂and  ⃗⃗  7 ̂  5 ,̂ find   such that  ⃗    ⃗⃗ is a vector pointing along the 
x-axis (i.e. has no y component). 

2. If  ⃗⃗⃗    ̂   ̂ and  ⃗⃗⃗  4 ̂  3 ,̂ find   and   such that   ⃗⃗⃗    ⃗⃗⃗    ̂  6 .̂ 

𝐴  𝐵⃗⃗  3𝐶   3𝑖̂  4𝑗̂    3𝑖̂  𝑗̂  3 𝑖̂   𝑗̂  9𝑖̂  3𝑗 ̂

Example 

Given three vectors (a) 𝐴  3𝑖̂  4𝑗,̂ (b) 𝐵⃗⃗   3𝑖̂  𝑗̂ and (c) 𝐶  𝑖̂   𝑗.̂ Assume all the vectors 
start at the origin.  

1. Show the three vectors in the xy-coordinate system  

2. Find 𝐴  𝐶 and 𝐴  𝐵⃗⃗  3𝐶, 

3. Find he vector 𝐷⃗⃗⃗ such that 𝐷⃗⃗⃗  𝐵⃗⃗  𝐶    

 

Solution 

1. The vectors in the xy-coordinate system 

 

 

 

 

 

 

 

2. 𝐴  𝐶   3𝑖̂  4𝑗̂   𝑖̂   𝑗̂  4𝑖̂   𝑗̂ 

 

3. 𝐷⃗⃗⃗  𝐵⃗⃗  𝐶   ⇒ 𝐷⃗⃗⃗  𝐶  𝐵⃗⃗   𝑖̂   𝑗̂    3𝑖̂  𝑗̂  4𝑖̂  3𝑗̂ 

 

C 

x 

y 

A 

B 

-4     -2       0       2       4 

4 

0 

-2 

2 
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3. If |   ̂    ̂|  |√5 3    |  find the possible values for  . 

4. Find the angle that each of the following vectors makes with the x-axis: 

a.  ̂   ̂ 

b.   4 ̂    ̂ 

c.  3   ̂   ̂  4 ̂  3 ̂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

d. 4   ⃗   ⃗, where  ⃗  4 ̂  3 ̂ and  ⃗  6 ̂  8  ̂

5. Find the unit vector in the direction of 

a.  ⃗   ̂   ̂ 

b.  ⃗⃗    4 ̂    ̂ 

c.  ⃗  4 ̂  3 ̂   

d.  ⃗  6 ̂  8  ̂

6. In the diagram below,  ⃗ is a vector of magnitude 35 cm;  ⃗⃗ is a vector of magnitude 13 cm. 
If      4 3 and      5   , 

a. write A and B in terms of   ̂and  ̂ 

b. Show that  ⃗   ⃗⃗ 𝑞makes an angle of 45° to the x-axis. 

 

 

  



General Physics Module Phys 1011 AAU 

  

Preliminaries 40 

 

1.4 Chapter Summary 

This chapter introduced a quantity as a definite or indefinite amount or size of something and 
discussed physical and nonphysical quantities. A physical quantity is a quantity that can be measured 
by defining its units of measurement or using a measuring instrument and is always expressed in 
terms of a numerical value (magnitude) and a unit. Nonphysical quantities include feelings such as 
love and exam anxiety which could be quantified by preparing a scale such as a questionnaire. 

A unit of measurement (defined and adopted by convention) is a standard by means of which the 
amount of a physical quantity is expressed. There are seven fundamental SI units and all other units, 
called derived units, can be expressed as combinations of the fundamental units. These 
combinations of fundamental units determine the dimensions of a derived quantity. The SI system 
also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than 
the fundamental unit itself. 

A measurement error is the difference between the observed (measured) value and the true 
(accepted) value and it can be expressed as absolute, relative or percentage error. Uncertainty is the 
quantification of the doubt about measured values which can be expressed in two ways: accuracy 
and precision. The accuracy of a measured value refers to how close a measurement is to the 
accepted value. The precision of measured values refers to how close the agreement is between 
repeated measurements. Significant figures express the precision of a measuring tool. In calculations 
the final answer should not be more precise than the number with the least number of significant 
figures. When a set of measured values is given, the measurement uncertainty is determined by the 
standard error of the mean of the given values. 

Vectors are physical quantities characterized magnitude and direction and which obey the law of 
parallelogram. Geometrically, vectors are represented by arrows. A unit vector is a vector of 
magnitude 1. Two vectors are equal if and only if they have the same magnitudes and directions. 

 

1.5 Conceptual Questions 

1. Identify some advantages of SI units over the British (Imperial) system of units. 

2. What is the relationship between the accuracy and uncertainty of a measurement? 

3. Estimate the order of magnitude of the length, in meters, of each of the following a dust 
particle, a fly, a 40-story building and an elephant. 

4. What types of natural phenomena could serve as time standards?  

5. Why is using a pulse rate a poor method of measuring time? 

6. Find the order of magnitude of your age in seconds. 

7. Estimate the number of times your heart beats in the average lifetime of an Ethiopian. 

8. Estimate the time duration of each of the following events in the units suggested in 
parentheses: (a) the blink of an eye (seconds), (b) a walk from your home to a nearby shop 
(minutes), (c) a photon to move across the milky way (years). 

9. Estimate the number of air molecules in a volume of 1 cm x 1 cm x 1 cm (assume the mean 
distance between air molecules is of the order of a nanometer). 

10. The left side of an equation has dimensions of energy and the right side has dimensions of 
pressure times volume. Can the equation be correct? explain your answer. 
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11. A vector has zero magnitude. Is it necessary to specify its direction? Explain. 

12. If two vectors are equal, what can you say about their components? 

13. If three vectors sum up to zero, what geometric condition do they satisfy? 

14. Suppose two quantities, A and B, have different dimensions. Determine which of the 

following arithmetic operations could be physically meaningful. (a)    , (b)      , (c) 

     , (d)    , (e)   , (f)    .  

15. Two different measuring devices are used by students to measure the length of a metal rod. 
Students using the first device report its length as 0.5 m, while those using the second report 
0.502 m. Can both answers be correct (choose one)? (a) Yes, because their values are the 
same when both are rounded to the same number of significant figures. (b) No, because 
they report different values.  

16. If vector B is added to vector A, under what conditions does the resultant vector have a 
magnitude equal to A + B? Under what conditions is the resultant vector equal to zero? 

17. Under what circumstances would a vector have components that are equal in magnitude? 

18. A student writes, “A bird that is diving for prey has a speed of −10 m/s.” What is wrong with 
the student’s statement? What has the student actually described? Explain. 

19. A weather forecast states that the temperature is predicted to be  −5°C  the following day. Is 
this temperature a vector or a scalar quantity? Explain. 

20. Give an example of a nonzero vector that has a component of zero. 

21. If two vectors are equal, what can you say about their components? 

22. If vectors  ⃗ and  ⃗⃗ are perpendicular to each other, what is the component of  ⃗⃗ along the 

direction of  ⃗? What is the component of  ⃗ along the direction of  ⃗⃗? 

23. If two vectors have the same magnitude, do their components have to be the same? 

 

 

1.6 Problems 

Express your answers to problems to the correct number of significant figures and proper units. 

1. Show that 1.0 m/s = 3.6 km/h. 

2. The speed of sound is measured to be 342 m/s on a certain day. What is this in km/h? 

3. Suppose that your bathroom scale reads your mass as 65 kg with a 3% uncertainty. What is 
the uncertainty in your mass (in kilograms)? 

4. A good-quality measuring tape can be off by 0.50 cm over a distance of 20 m. What is its 
percent uncertainty? 

5. A car speedometer has a 5.0% uncertainty. What is the range of possible speeds when it 
reads 90km/h? 

6. An infant’s pulse rate is measured to be 130 ± 5 beats/min. What is the percent uncertainty 
in this measurement? 
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7. State how many significant figures are proper in the results of the following calculations:  

(a)    6 7  98     46            

(b)    8 7   

(c)    6 ×        37   . 

8. (a) How many significant figures are in the numbers 99 and 100? (b) If the uncertainty in 
each number is 1, what is the percent uncertainty in each? (c) Which is a more meaningful 
way to express the accuracy of these two numbers, significant figures or percent 
uncertainties? 

9. (a) If your speedometer has an uncertainty of 2.0km/h at a speed of 90km/h, what is the 
percent uncertainty? (b) If it has the same percent uncertainty when it reads 60km/h, what 
is the range of speeds you could be going? 

10. (a) A person’s blood pressure is measured to be 120±2mm Hg. What is its percent 
uncertainty? (b) Assuming the same percent uncertainty, what is the uncertainty in a blood 
pressure measurement of 80mm Hg? 

11. A marathon runner completes a 42.188-km course in 2h, 30 min, and 12s. There is an 
uncertainty of 25m in the distance traveled and an uncertainty of 1 s in the elapsed time. (a) 
Calculate the percent uncertainty in the distance. (b) Calculate the uncertainty in the 
elapsed time. (c) What is the average speed in meters per second? (d) What is the 
uncertainty in the average speed? 

12. The sides of a small rectangular box are measured to be 1.80 ± 0.01 cm, 2.05 ± 0.02 cm, and 
3.1 ± 0.1 cm long. Calculate its volume and uncertainty in cubic centimeters. 

13. The length and width of a rectangular room are measured to be 3.955 ± 0.005m and 3.050 ± 
0.005m. Calculate the area of the room and its uncertainty in square meters. 

14. A car engine moves a piston with a circular cross section of 7.500 ± 0.002 cm diameter a 
distance of 3.250 ± 0.001 cm to compress the gas in the cylinder. (a) By what amount is the 
gas decreased in volume in cubic centimeters? (b) Find the uncertainty in this volume. 

15. A generation is about one-third of a lifetime. Approximately how many generations have 
passed since the year 0 AD? 

16. Calculate the approximate number of atoms in a bacterium. Assume that the average mass 
of an atom in the bacterium is ten times the mass of a hydrogen atom. (Hint: The mass of a 
hydrogen atom is on the order of     7 kg and the mass of a bacterium is on the order of 

      kg.) 

17. Approximately how many atoms thick is a cell membrane, assuming all atoms there average 
about twice the size of a hydrogen atom? 

(a) Calculate the number of cells in a hummingbird assuming the mass of an average 
cell is ten times the mass of a bacterium.  

(b) Making the same assumption, how many cells are there in a human? 

18. The Atwood machine consists of two masses   and   (with      ) attached to the ends 
of a light string that passes over a light, frictionless pulley. When the masses are released, 
they accelerate with               . Suppose that   and   are measured as 
     ±   and   5 ±  , both in grams. Find the uncertainty in the acceleration 
measurement, δa. 
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19. Suppose       ,         ,         , and      . (a) What is the dimension of   ? 
(b) What is the dimension of     t? (c) What is the dimension of         ? 

20. The arc length formula says the length   of arc subtended by angle   in a circle of radius   is 
given by the equation      . What are the dimensions of (a)  , (b)  , and (c)  ? 

21. Consider the physical quantities  ,  ,  ,  , and   with dimensions      ,      , 

        ,         , and      . Assuming each of the following equations is 
dimensionally consistent, find the dimension of the quantity on the left-hand side of the 
equation: (a)     ; (b)     5   ; (c)     ; (d)      ; (e)      . 

22. In what follows, assume   is area,   is volume, and all other variables are lengths. 
Determine which formulas are dimensionally consistent. (a)       ; (b)        
    ; (c)     5  ; (d)      ; (e)       6. 

23. A student drives 7.50 km in a straight line in a direction 15° east of north. (a) Find the 
distances she would have to drive straight east and then straight north to arrive at the same 
point. (b) Show that she still arrives at the same point if the east and north legs are reversed 
in order. Assume the +x-axis is to the east. 

24. A sledge is being pulled by two horses on a flat terrain. The net force on the sledge can be 

expressed in the Cartesian coordinate system as vector  ⃗     98    ̂  8      ̂   , 
where   ̂and  ̂ denote directions to the east and north, respectively. Find the magnitude and 
direction of the pull. 

25. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the velocity 
of a fly, the age of Earth, the boiling point of water, the cost of a book, Earth’s population, or 
the acceleration of gravity? 

26. For the vectors given in the following figure, use a graphical method to find the following 

resultants: (a)  ⃗   ⃗⃗, (b)  ⃗   ⃗⃗ , (c)  ⃗⃗⃗   ⃗, (d)  ⃗   ⃗⃗, (e)  ⃗⃗⃗   ⃗, (f)  ⃗    ⃗, (g)  ⃗  4 ⃗⃗⃗  

  ⃗ . 
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2 Kinematics in one Dimensions 

 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Understand motion and position 

 Define distance and displacement 

 Define speed and velocity 

 Identify the average velocity and instantaneous velocity 

 Define the average and instantaneous acceleration 

 Derive the equations of motion with constant acceleration 

 Solve related problems 

Introduction  

The study of motion and of physical concepts such as force and mass is called dynamics. The part of 
dynamics that describes motion without regard to its causes is called kinematics. In this chapter, we 
study the basic physics of motion where the object (race car, tectonic plate, blood cell, or any other 
object) moves along a single axis. Such motion is called one-dimensional motion. 

 

Though everything around us and elsewhere on earth seems stationary, move with Earth’s rotation, 
Earth orbits around the Sun, the Sun orbits around the centre of the Milky Way galaxy, and that 
galaxy migrates relative to other galaxies.  

 

If the motion is along a straight line only the line may be vertical, horizontal, or slanted, but it must 
be straight. With this, questions like does the moving object speed up, slow down, stop, or reverse 
direction and if the motion does change, how is time involved in the change can be attempted. 
Generally, motion is a continuous change of position; whereas position is location of an object 
relative to some reference point, often the origin (or zero point) of an axis such as the x-axis.  

In one-dimensional motion, moving objects are restricted to motion along a straight line. To describe 
such motion a + or - sign are all that is needed to specify direction. 

 

The positive direction of the axis is in the direction of increasing numbers (coordinates), which is to 
the right, as in Fig. 2.1. The opposite is the negative direction. 
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Figure 2-1: Position on an axis that is marked in units of length. 

 

The aforementioned information is, therefore, essential to understand and explain the remaining 
topics such as distance, displacement, speed, velocity and acceleration.  

 

2.1 Distance and Displacement 

It is important to recognize the difference between distance and displacement. 

2.1.1 Distance 

Distance travelled by a particle is the length of the path a particle takes from its initial position to its 
final position. Distance is a scalar quantity that can be denoted by any English alphabet s, d…, usually 
and is always indicated by a positive number. 

2.1.2 Displacement 

Displacement of a particle is the shortest distance between its initial and final positions. It is an 
example of a vector quantity. Many other physical quantities, including position, velocity, and 
acceleration, also are vectors. Displacement is usually denoted by s  in which other English alphabets 
can be also used. Moreover, one can define displacement as change in position in some time 
interval. 

As a particle moves from an initial position xi to a final position xf, along the +x - axis, the 
displacement becomes      . We use the Greek letter delta (Δ) to denote the change in a quantity, 

therefore,  

                (2-1) 

Note that    is not the product of   and x; it is a single symbol that means “the change in the 
quantity x.” 

 

 

Remark:  

 

Displacement is the change in position of a particle. It is positive if the change in position is in the 
direction of increasing x (the + x direction), and negative if it is in the -x direction. 

 

Distance is the total path length travelled by a particle and is a scalar physical quantity that can be 
denoted by any English alphabet s, d…, usually. Distance travelled by a particle cannot be zero 
where displacement can be.  
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Examples:  

 

1. Consider the case of a particle moving from point A to point D, as shown. The shortest 
distance is the distance between A and D in the counter clock wise direction which is 

√ 5            3      3√      and hence is the displacement of the particle at 
450 in the south east direction,  whereas the distance traversed is that followed the longer 
path, 5    3                

 

Similarly, a car travelled 10 km from known initial position and then back to the same point covers 
20 km of total distance whereas its displacement is zero. For only forward or backward straight-line 
motion distance can be magnitude of a displacement.  

 

2. Find the distance and displacement referring to the following diagram, if an object travels 
4m to the positive x-axis and then 3m to the y-axis. 

 

 

 

Solution: 

5 km 

D 
C 

B 

2km 

3km 

θ 

4m 

3m 

A 
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Distance, 

  4  3  7  

 

Magnitude of the Displacement,   

  √ 4     3    5  

 

and its direction will be  

       
3

4
        75  37  

 

Therefore, the displacement is  ⃗  5  37                               

 

2.2 Speed and Velocity 

2.2.1 Speed and Average Speed 

Speed is the ratio of the distance travelled by any object, irrespective of its direction, to the time it 
takes to travel that distance. Speed involves both distance and time. Therefore, its unit in SI system 
is meter per second (m/s or ms-1). There are other non-SI units like cm/s, km/h, km/min, ft/s, ...etc.  

 

Ordinarily, the speed of a body does not remain uniform over a certain time interval we are 
considering. For instance, a bus that carry passengers between Addis Ababa and Ambo, with a half 
dozen intermediate stops, gains speed when it starts from a station and loses speed when it is 
approaching a station. Again, it slows down in motion while passing over the bridges etc.  It also 
changes its direction quit often while proceeding along its journey. Thus, the speed of the bus is not 
uniform but variable.  

 

When the speed of a body varies, then we should use the term average speed since we are 
determining the average value of the spree over the time interval we are considering. Thus, the 
average speed of a body between two points is measured by the total distance covered by the body 
between those points divided by the total time taken by the body to travel that distance.  

 

Mathematically, this is expressed as  

 

              
  

  
       (2-2) 

Where    is the total distance covered by the body in the corresponding time interval     
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Remark: 

 

Speed is a scalar physical quantity that refers to "how fast an object is moving." Speed can be 
thought of as the rate at which an object covers distance. A fast-moving object has a high speed 
and covers a relatively large distance in a short amount of time. Contrast this to a slow-moving 
object that has a low speed; it covers a relatively small amount of distance in the same amount of 
time. An object with no movement at all has a zero speed. Speed is represented by “v” usually, 
and hence,   

  
  

  
 

2.2.2 Velocity Average Velocity 

Velocity is related to speed in the same way that displacement is related to distance. It is the rate of 
displacement i.e., it is the ratio of the displacement which takes account of direction as well distance 
to time interval. In other words, velocity is the rate of change of position of a body in a particular 
direction.  

 

The velocity of a body is also expressed in meters per second (ms-1) or kilometres per sec or 
kilometres per hour (km/h) like speed. Its dimensions are M0L1T-1.  

 

Consider a particle moving along the x-axis, as shown in Figure 2.1. 

 

Figure 2-2: Variation of position with time. 

  

The instantaneous positions of the particle are uniquely determined by its distance from the origin 
O, i.e., its x coordinate.  The distance travelled during the time interval         is              

 

O 

A(t1) B(t1) 

y 

x 

x(t2) 

x(t1) x(t2)-x(t1) 

http://www.physicsclassroom.com/Class/1DKin/U1L1b.cfm
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Figure 2-3: Distance – time graph 

  

The ratio of the displacement of the particle to this time interval gives the average velocity between 
points A and B. i.e., on a graph of x versus t, vav is the slope of the straight line that connects two 
particular points on the x (t) curve: one is the point that corresponds to x(t2) and t2, and the other is 
the point that corresponds to x(t1) and t1. 

 

                      ̅   
            

    
,  

Or 

    
           

     
 

  

  
      (2-3) 

 

 

 

 

 

2.2.3 Instantaneous velocity:   

We have now seen two ways to describe how fast something moves: average velocity and average 
speed, both of which are measured over a time interval Δt. However, the phrase “how fast” more 

D
is

ta
n

ce
 (

x)
 

x(t1) 

x(t2) 

O 

y 

t2 – t1 

t1 T2 x 

Time (t) 

x(t2)-x(t1) = Δx 
 

Remark:  

 

When the velocity of a body is constant, the velocity is very simply defined as the displacement 
travelled divided by time taken; but when the velocity changes with time, (i.e., either its speed 
changes or direction of motion changes or both changes), then a more careful definition is 
required.  
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commonly refers to how fast a particle is moving at a given instant—its instantaneous velocity (or 
simply velocity) v. 

 

The velocity at any instant is obtained from the average velocity by shrinking the time interval Δt 
closer and closer to 0. 

 

         
    

  

  
 

For uniform motion  

          

 

 

Figure 2-4:  x-t curve for non-uniform motion. 

 

Examples: 

 

1. A car travelled a distance of 150 km in 3 hours on straight level road. What is the speed of 
the car? 

 

Solution: 

  
 

 
 

     

   
        

2. A bus travelling at a speed of 120km/hr east wards continues its journey steadily on a 
straight level road for 3 hours. What is the actual displacement of the bus after 3 hours? 

 

Solution: 

 ⃗⃗   ⃗⃗⃗     
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3. A turtle and a rabbit engage in a footrace over a distance of 4.00 km. The rabbit runs 0.500 
km and then stops for a 90.0-min nap. Upon awakening, he remembers the race and runs 
twice as fast. Finishing the course in a total time of 1.75 h, the rabbit wins the race. (a) 
Calculate the average speed of the rabbit. (b) What was his average speed before he 
stopped for a nap? 

 

Solution: 

 

Finding the overall average speed in part (a) is just a matter of dividing the total distance by the total 
time. Part (b) requires two equations and two unknowns, the latter turning out to be the two 
different average speeds: v1 before the nap and v2 after the nap. One equation is given in the 
statement of the problem (v2 _ 2v1), whereas the other comes from the fact that the rabbit ran for 
only 15 minutes because he napped for 90 minutes. 

 

(a) Find the rabbit’s overall average speed. 

 

               
              

          
 

                        
     

       
 

                                       ⁄  

(b) Find the rabbit’s average speed before his nap. 

 

Sum the running times, and set the sum equal to 0.25 h:  

                

Substitute                      : 

  

  
 

  

  
          (1) 

Substitute        and the values of    and    into Equation (1) 

        

  
 

       

   
           (2) 

Solve Equation (2) for   :  
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4. A car travelled 40km east in 1hr and then travelled 80km north in 2hrs. Calculate  

(a) its average speed, and  

(b) its average velocity 

 

Solution: 

(a) average speed, 

    
              

          
 

 
         

       
         

(b) Average velocity, 

 ⃗⃗⃗   
                  

          
  ⃗⃗⃗      ⃗⃗⃗      

 

Magnitude of the average velocity, 

 

     √  
        

       
 

     (
    

  
)
 
 (

*
  

 
+  

  
)

 

 
  √   

  
              

 

And its direction, 

       
    

    
            

Therefore,  

 ⃗⃗⃗             ⁄    °        s              s             

 

5. The position vector of a body moving along the x-axis is given by         ⁄      
Compute its instantaneous velocity at time       

 

θ 

80km 

40km 
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Solution:  

 ⃗⃗⃗          
    

 ⃗⃗⃗        ⃗⃗⃗   

  
 

    
    

      ⁄               ⁄    

  
 

    
    

      ⁄          ⁄              ⁄              ⁄   

  
 

        *
      ⁄       

  
 

      ⁄       

  
+           ⁄ ; 

 
Hence at                     

 

2.3 Acceleration 

When velocity of a particle changes with time, the particle is said to be accelerating. For example, 
the magnitude of the velocity of a car increases when you step on the gas and decreases when you 
apply the brakes. Let us see how to quantify acceleration. 

 

Suppose an object that can be modelled as a particle moving along the x- axis has an initial velocity 
    at time    and a final velocity      at time    , 

 

The average acceleration  ̅     of the particle is defined as the change in velocity Δvx divided by 
the time interval Δt during which that changes occur: 

 

 ̅  
   

  
 

       

     
      (2-4) 

As with velocity, when the motion being analysed is one-dimensional, we can use positive and 
negative signs to indicate the direction of the acceleration. Because the dimensions of velocity are 
L/T and the dimension of time is T, acceleration has dimensions of length divided by time squared, or 
L/T2. The SI unit of acceleration is meters per second squared (m/s2). There are other non SI unit, 
such as (cm/s2, ft/s2). 

 

In some situations, the value of the average acceleration may be different over different time 
intervals. It is therefore useful to define the instantaneous acceleration as the limit of the average 
acceleration as Δt approaches zero. 

 

 ⃗⃗⃗              
 ⃗⃗⃗        ⃗⃗⃗   

  
     (2-5) 

 

Example:  
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1. A particle is in motion and is accelerating. The functional form of the velocity is       
     5    ⁄    Find the instantaneous acceleration at t = 1, 2, 3, and 5 s. 

 

Solution:  

 ⃗⃗⃗          
    

 ⃗⃗⃗        ⃗⃗⃗   

  
 

 ⃗⃗⃗          
    

                           

  
 

 ⃗⃗⃗          
    

                    

 

i)  ⃗⃗⃗                       

ii)  ⃗⃗⃗                      

iii)  ⃗⃗⃗                        

iv)  ⃗⃗⃗                        

 

 

 

 

 

 

 

2.3.1 Motion with constant acceleration 

The simplest kind of accelerated motion is straight-line motion in which the acceleration is constant. 
This means that the velocity changes at the same rate throughout the motion. As can be seen from 
the velocity-time graph, the velocity is increasing by equal amounts in equal intervals of time. The 
slope of a chord between any two points on the line is the same as the slope of a tangent at any 
point, and the average and instantaneous accelerations are equal.  

Remark:  

 

When the object’s velocity and acceleration are in the same direction, the object is speeding up. On the 
other hand, when the object’s velocity and acceleration are in opposite directions, the object is slowing 
down (which we call deceleration). Average acceleration and instantaneous acceleration are equal 
during uniformly accelerated motion. Acceleration of a body is  𝑚 𝑠 ⁄  means that the velocity increases 
by  𝑚 𝑠⁄  every one second. 
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Figure 2-5: velocity – time graph for rectilinear motion 

 

 

Hence the average acceleration     can be replaced by the constant acceleration  , and we have  

 

  
      

     
       (2-6) 

Let      and let    be any arbitrary later time    Let    represent the velocity when     (called 

the initial velocity), and let   be the velocity at any later time   (final velocity). Then the preceding 
equation becomes  

  
     

   
 

Or  

              (2-7) 

 

To find the displacement of a particle moving with constant acceleration, we make use of the fact 
that when the acceleration is constant and the velocity-time graph is a straight line, see Figure 2.3, 
the average velocity in any time interval equals one-half the sum of the velocities at the beginning 
and the end of the interval. Hence, the average velocity between zero and   is 

 

 ̅  
     

 
           (2-8) 

(This is not true in general, when the acceleration is not constant and the velocity-time graph is 
curved, as in figure 4 below.) 

 

𝒗𝟎 

𝒗 

Velocity 

𝒗 

𝒗𝟎 

𝒂𝒕 

0 
t Time  



General Physics Module Phys 1011 AAU 

  

Kinematics in one Dimensions 56 

 

 

Figure 2-6: velocity-time graph. The average acceleration between    and    equals the slope of the 

chord PQ. 

 

By definition, the average velocity is  

 

    
      

     
 

 

Let      and let   be any arbitrary time  . Let    represent the position when     (the initial 

position) and let   be the position at time  . Then the preceding equation becomes 

 

           

 

Substituting for     we obtain  

 

      
     

 
    

 

If we eliminate ,  

 

      
         

 
   

 

Or  

 

         
 

 
           (2-9) 

𝑸 

𝑷 

𝟎 

𝒗 

𝒕 
𝒕𝒊 𝒕𝒇 

𝒗𝒇 

𝒗𝒊 

𝒕𝒇  𝒕𝒊   𝒕 

𝒗𝒇  𝒗𝒊
  𝒗 

Slope = average acceleration 

Slope = instantaneous acceleration 
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Figure 2-7: coordinate – time graph for motion with constant acceleration. 

 

This equation gives a parabolic coordinate- time curve as in Figure 2-7. Eliminating the time   
between equations (2.7) and (2.9) we get:  

 

     
                 (2-10) 

 

Example: 

 

1. An object moves along the x – axis with constant acceleration   5        At time     it 
is at   6  and has velocity   3   .  

(a) Find the position and velocity at time t = 2s. 

(b) Where is the body when its velocity is 6m/s? 

 

Solution:  

 

Using Equation (2.9), the position can be calculated: 

 

         
 

 
    

  6   
3 

 
      

 

 
 5                 

 

We can also obtain the velocity from Expression (2.7): 

 

        

  3
 

 
  5             3      

 



General Physics Module Phys 1011 AAU 

  

Kinematics in one Dimensions 58 

 

To know where the body is when the velocity is 6m/s means to find the coordinate (or x). Hence, we 
can use Equation (2.10) 

 

     
           

 6   s    3   s     5              

Or 

     
 7    ⁄

      ⁄
   7  

 

Since    6     

    7  6  8 7  

 

We can also calculate the time and find the position:  

 

  
    

 
 

6  ⁄  3  ⁄

5   ⁄
   6    

         
 

 
    8 7  

Remark: If the velocity is constant the acceleration is zero, and hence,  

 

           

         

 

2. A certain automobile manufacturer claims that its super-deluxe sport car will accelerate 
uniformly from rest to a speed of 87 mi/h in 8s. 

(a) Determine the acceleration of the car.  

 

Solution:  

  
    

 
 

38 9  s   

8  
  4 86      

 

Where       6 934        ⁄    447    87      ⁄   38 9    

 

(b) Find the distance the car travels in the first 8 s.  

 

Solution: 
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 38 9   s     8     56  

 

(c) What is the velocity of the car 10s after it begins its motion if it continuous with the same 
acceleration? 

 

Solution 

          4 86
 

  
×     48 6    

 

(d) Find the distance travelled during the 9th second.  

 

Solution: 

                    
 

 
    

    
   

   
 

 
 4 86  9  8   

    5  4 86   7  
 4  3   

 

2.3.2 Free fall motion 

The most common example of motion with (nearly) constant acceleration is that of a body falling 
toward the earth. In the absence of air resistance it is found that all bodies, regardless of their size or 
weight, fall with the same acceleration at same point on the earth’s surface; and if the distance 
covered is small compared to the radius of the earth, the acceleration remains constant throughout 
the fall. The effect of air resistance and the decrease in acceleration with altitude will be neglected. 
This idealized motion is spoken of as “free fall,” although the term includes rising as well as falling 
motion.  

 

The acceleration of a freely falling body is called acceleration due to gravity, or the acceleration of 
gravity, and is denoted by the letter g.  

 

 

 

Remark:  

At or near the earth’s surface the magnitude of g is approximately 9 8𝑚 𝑠 ⁄ , or 98 𝑐𝑚 𝑠 ⁄ , or 
3 𝑓𝑡 𝑠 ⁄ . More precise values, and small variations with latitude and elevation. On the surface of 
the moon, it is due to the attractive force exerted on a body by the moon and not by the earth. On 
the moon 𝑔    67𝑚 𝑠 , and near the surface of the sun, 𝑔   74𝑚 𝑠 . The gravitational force 
accelerates an object toward the earth and decelerates an object moving upward near the surface 
of the earth, and direction of g is always (positive) towards earth’s centre.  
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For freely falling bodies the motion is vertical along y- axis so that   is replaced by g and x is replaced 
by y in the equations of motion for rectilinear motion.   

 

 

 

 

Example: 

 

1. A body is released from rest and falls freely. Compute its position and velocity after 1 and 2s. 
Take the origin at the elevation of the starting point, the y-axis vertical, and the upward 
direction as positive.  

 

Solution: 

 

The initial coordinate   and the initial velocity    are both zero. The acceleration is downward, in 
the negative y-axis, so    9 8     . (It is convenient to set    9 8      for downward 
motion and    9 8      for upward motion to directly use the equations of rectilinear motion 
without change following direction of the acceleration due to gravity which is always directed down 
ward.) 

 

When       

          
 

 
    

                 
 

 
 9 8            4 9  

 

Hence, the body is at 4.9 m below the origin. The velocity, then, becomes  

 

          

    
 

 
  

9 8 

  
      9 8     

 

1. 𝒗𝒚  𝒗𝟎𝒚  𝒈𝒕 final velocity at any time 𝒕 

2. 𝒚  𝒗𝟎𝒚𝒕  
𝟏

𝟐
𝒈𝒕𝟐 vertical position at any time 𝒕 

3. 𝒗𝒚
𝟐  𝒗𝟎𝒚

𝟐  𝟐𝒈𝒚        (2-11) 

4. For freely falling object 𝒗𝟎  𝟎  

5. When an object reaches a maximum height 𝒗  𝟎  
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The velocity is negative, of magnitude9 8    .  

 

      When t=2s,  

          
 

 
    

                 
 

 
 9 8            9 6  

 

The velocity can be calculated as: 

 

          

           9 8            9 6     

 

The velocity is negative, of magnitude  9 6    . 

 

2. A stone is thrown from the top of a building with an initial velocity of     ⁄  straight 
upward. The building is 5    high, and the stone just misses the edge of the roof on its way 
down. Determine (a) the time needed for the stone to reach its maximum height, (b) the 
maximum height, (c) the time needed for the stone to return to the level of thrower, (d) the 
velocity of the stone at this instant, and (e) the velocity and the position of the stone at 
  5    

Solution: 

 

(a) Since the motion is upward, we take  9 8      and the final velocity, 
     at maximum height. To find the time necessary to reach the 

maximum height, we use the equation 

  

           where             

  
      

 
 

   
      ⁄

 9 8     
    4    

 

(b) The maximum height h is calculated as: 

 

       
 

 
    

              4     
 

 
  9 8          4         4   
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as measured from the position of throw. 

 

 

(c) The time required to return to the level of the thrower is twice of the time 
calculated in part (a) which is 4.082s, or calculated with the assumption 
that displacement is zero.  

 

       
 

 
    

                                 
 

 
  9 8         

 

                  4  8         corresponds to the time the stone starts its motion and 
   4  8    is the required time. 

  

(d) The velocity of the stone at this instant means the velocity at which the 
body reached the level of the throw point back. Hence, 

  

          

             9 8       4  8     

          

 

Note that the magnitude of this velocity is the same as the magnitude of the initial velocity.  

  

(e) After 5 seconds the position can be obtained using the expression  

 

       
 

 
    

  (  
 

 
)  5    

 

 
  

9 8 

  
  5         5  

This means that the body is 22.5m below the point of throw; or 50m +(- 22.5m) = + 27.5 m from the 
base of the building.  

 

The velocity, now becomes  

 

          

          9 8       5    
   9     

Or, 29 m/s down ward.  
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(f) Find the velocity of the stone just before it hits the ground.  

 

Use vertical distance -50m, initial velocity 20 m/s and g = -9.8 m/s2since the motion started at above 
50m below the reference point. Hence,  

 

  
     

      

              9 8        5     
  38      ⁄  

    37  5     

 

or by first calculating the total time of flight,  

 

       
 

 
    

           5         5   9 8    

 

Solving the quadratic equation for t yields t = 5.831s. 

 

Finally,  

          

      9 8  5 83   
    57  438 
  37  4     

2.4 Chapter Summary 

Displacement 

The displacement of an object moving along the x - axis is defined as the change in position of the 
object,  

 

         

 

where    is the initial position of the object and    is its final position. 

 Velocity 

The average speed of an object is given by 

  

        s     
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The average velocity  ⃗⃗⃗    during a time interval     is the displacement   ⃗⃗⃗ divided by    . 

 

 ⃗⃗⃗   
  ⃗⃗⃗

  
 

 ⃗⃗⃗   ⃗⃗⃗ 

     
 

 

The average velocity is equal to the slope of the straight line joining the initial and final points on a 
graph of the position of the object versus time. The slope of the line tangent to the position versus 
time curve at some point is equal to the instantaneous velocity at that time. The instantaneous 
speed of an object is defined as the magnitude of the instantaneous velocity. 

 

 Acceleration 

The average acceleration a of an object undergoing a change in velocity   ⃗ during a time interval    
is 

 ⃗   
  ⃗

  
 

 ⃗   ⃗ 

     
 

 

The instantaneous acceleration of an object at a certain time equals the slope of a velocity versus 
time graph at that instant. 

 

The most useful equations that describe the motion of an object moving with constant acceleration 
along the x – axis are as follows: 

        

       
 

 
    

     
       

 

All problems can be solved with the first two equations alone, the last being convenient when time 
doesn’t explicitly enter the problem. After the constants are properly identified, most problems 
reduce to one or two equations in as many unknowns. 

2.5 Conceptual Questions 

1. If the velocity of a particle is nonzero, can the particle’s acceleration be zero? Explain. 

2. If the velocity of a particle is zero, can the particle’s acceleration be nonzero? Explain. 

3. If a car is traveling eastward, can its acceleration be westward? Explain. 

4. A ball is thrown vertically upward. 

(a) What are its velocity and acceleration when it reaches its maximum altitude? 

(b) What is the acceleration of the ball just before it hits the ground? 
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2.6 Problems 

1. A cyclist goes south at  5      for      and then west at          for 10 km. Find his 
average speed and his average velocity. 

2. A car travels east at 4        for 3     , and then north at 3        for 3     .  

a. What distance did it travel? 

b. What was its displacement? 

c. Calculate its average speed. 

d. Calculate its average velocity. 

3. A body accelerates uniformly from  6   s to        while covering a distance of 
7    calculate  

a. Its uniform acceleration. 

b. The time taken. 

c. The distance covered in the last second of its journey.  

4. An object starts from rest with constant acceleration of 8     along a straight line. Find  

a. The speed at the end of 5 seconds. 

b. The average speed for the 5 seconds interval. 

c. The distance travelled in 5 seconds. 

d. The distance travelled during the 5th second. 

5. A body falls freely from rest for 6        . Find  

a. The height covered. 

b. The final speed of the body. 

c. The distance covered in the last             

6. A ball is dropped from rest at a height of 50m above the ground. 

a. How long does it take to reach the ground? 

b. What is its speed just before it hits the ground? 

7. A car moved east ward 120km/hr in 3 hrs and then north by 60km/hr in 2hrs. calculate: 

a. Its average speed. 

b. Its average velocity. 

8. A student walked at 12km/hrs for 2hrs and run at a speed of 16km/hr for 5hrs on a straight 
road. Calculate his average speed. 

9. A stone is flung down from the top of a cliff with a velocity of 6.3m/s and reach the bottom 
in 3 seconds. How high is the cliff, and with what velocity does the stone hit the ground? 

10.  A body accelerates uniformly from 12m/s to 16m/s while covering a distance of 70m. 
calculate: 

a. Its uniform acceleration 

b. The time taken 
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c. The distance covered in last second of its journey.  

11. The following figure represents the velocity of a body during the first 30 seconds of its 
motion. Find distance and acceleration of the body from 20 seconds to 30 seconds.  

 

12. A body is dropped from rest from the top of a very high building. Taking the acceleration due 
to gravity to be        , draw  

a. The speed-time graph. 

b. The displacement-time graph of the body for the first 6 seconds of its fall, assuming 
that the body reaches a constant velocity after 4 seconds.    
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3 Kinematics in Two Dimensions 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Define and formulate displacement, velocity and acceleration of arbitrary particle in two 
dimensions.  

 Calculate instantaneous velocity and acceleration in two dimensions. 

 Familiar with motions in two dimensions. 

 Discuss motion with constant acceleration 

 Familiar with Projectile motions.  

 Explain Uniform Circular motion.  

 Attempt to solve related problems in this chapter. 

 

Introduction 

The physical world is full of moving objects to describe the motion of real objects you usually need 
to make simplifying assumptions. Perhaps the most important simplification in applied mathematics 
is ignoring the size and shape of an object we are consider objects as particles and this then called 
the particle model. The physical quantities required for the kinematics description of the motion of a 
particle are its position, velocity and acceleration. The form which the description of these vector 
quantities takes depends on the coordinates in terms of which and the coordinate system with 
respect to which we choose to describe the motion of the particle.  

 

In this chapter we explore the kinematics of a particle moving in two dimensions. Knowing the basics 
of two-dimensional motion will allow us to examine—in future chapters—a wide variety of motions, 
ranging from the motion of satellites in orbit to the motion of electrons in a uniform electric field. 
We begin by studying in greater detail the vector nature of position, velocity, and acceleration. As in 
the case of one-dimensional motion, we derive the kinematics equations for two-dimensional 
motion from the fundamental definitions of these three quantities. We then treat projectile motion 
and uniform circular motion as special cases of motion in two dimensions. 

 

3.1 Displacement, Velocity and acceleration in two dimensions  

Learning outcome 

After completing this section, students are expected to: 

 Drive motion of equation for an arbitrary particle in two dimensions.  
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 Define displacement, velocity and acceleration in two dimensions. 

 Define instantaneous velocity and acceleration  

 Solve problems related with this section  

3.1.1 Position and displacement 

We begin by describing the position of a particle by its position vector  ̅, drawn from the origin of 
some coordinate system to the particle located in the xy plane, as in Figure 3.1. The position vector  ̅ 
locates an object relative to the origin of a reference frame "o" shown in Fig 3.1 and mathematically 
given in Eq.3.1 in two-dimensions. 

                 

     Figure 3.1: Position vector in xy plane  

                                    ⃗⃗    ̂    ̂                                                                        3.1 

Where x and y are object co- ordinates. At time ti the particle is at point P, described by position 
vector ri. At some later time tf it is at point Q, described by position vector rf. The path from P to Q is 
not necessarily a straight line. As the particle moves from P to Q in the time interval ∆t = tf - ti, its 
position vector changes from  ̅  to  ̅ . As we learned in Chapter 2, displacement is a vector, and the 

displacement of the particle is the difference between its final position and its initial position. We 
now define the displacement vector   ̅ for the particle of Figure 3.2 as being the difference between 
its final position vector and its initial position vector: 
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Figure 3.2:  An object moving along some curved path between points P and Q. The displacement 
vector   ̅  is the difference in the position vectors  ̅  and   ̅ . 

 

From the vector diagram in Figure 3.2, the final position vector is the sum of the initial position 
vector and the displacement  ̅  =  ̅  +   ̅. From this relationship, we obtain the displacement of an 

object.  An object’s displacement is defined as the change in its position vector, or 

 

                    ̅ =  ̅  -   ̅         3.2  

The displacement  vector   ̅ has components along    and    (See Fig 3.3) for an object that moves 

from location         to (     ) in a time interval   . The x-component of the object`s displacement 

is             and the y-component of the object`s displacement is           . 

                       

Figure 3.3: The displacement vector components along the x and y axes.  

 

Therefore, Eq. 3.2 can be rewrite as: 

 

  ̅ =     +              3.3  

 

The direction of   ̅ is indicated in Figure 3.2. As we see from the figure, the magnitude of   ̅ is less 
than the distance travelled along the curved path followed by the particle. 

3.1.2 Velocity  

It is often useful to quantify motion by looking at the ratio of a displacement divided by the time 
interval during which that displacement occurs, which gives the rate of change of position. In two-
dimensional (or three-dimensional) kinematics, everything is the same as in one-dimensional 
kinematics except that we must now use full vector notation rather than positive and negative signs 
to indicate the direction of motion. We define the average velocity of a particle during the time 
interval ∆t as the displacement of the particle divided by the time interval: 
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 ⃗⃗⃗    
   ̅

   
         3.4 

 

The x and y components of the average velocity are given by 

 

        
   

   
     and                

   

   
        3.5  

 

and express the rate at which an object’s position is changing along the x and y axes, respectively. 
Note that the magnitude of the average velocity is just the distance between the endpoints divided 
by the elapsed time and the direction of the average velocity is the same as the direction of    ̅. 
Consider again the motion of a particle between two points in the xy plane, as shown in Figure 3.4.  

                      

Figure 3.4: Displacement of the particle in xy plane 

 

As the time interval over which we observe the motion becomes smaller and smaller, the direction 
of the displacement approaches that of the line tangent to the path at A. The instantaneous velocity 

V  is defined as the limit of the average velocity  
   ̅

   
 as ∆t approaches zero: 

 

                         V = 
lim

0t  V   = 
lim

0t  
t

r




                                                            3.6 

 

The direction of the instantaneous velocity vector is along a line that is tangent to the object’s path 
and in the direction of its motion. 

3.1.3 Acceleration  

As a particle moves from one point to another along some path, its instantaneous velocity vector 
changes from Vi at time ti to Vf at time tf. Knowing the velocity at these points allows us to determine 
the average acceleration of the particle. An object’s average acceleration during a time interval    is 
the change in its velocity    ̅ divided by   , or 
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   ̅    
  ̅

  
           3.7 

 

Average acceleration has components given by 

 

                                
    

   
     and                

    

   
                                             3.8 

 

When the average acceleration of a particle changes during different time intervals, it is useful to 
define its instantaneous acceleration. The instantaneous acceleration  ⃗ is defined as the limiting 

value of the ratio  
  ̅

  
 as    approaches zero:  

 

  ⃗⃗⃗         
  ⃗⃗⃗

  
                                                             3.9 

 

 

 

 

Remarks: 

 It is important to recognize that various changes can occur when a particle accelerates. First, 
the magnitude of the velocity vector (the speed) may change with time as in straight-line 
(one-dimensional) motion. Second, the direction of the velocity vector may change with 
time even if its magnitude (speed) remains constant, as in curved-path (two-dimensional) 
motion. Finally, both the magnitude and the direction of the velocity vector may change 
simultaneously. 

 When an object's speed is increasing, the object's acceleration always has a component in 
the direction of its velocity.  When an object's speed is decreasing the object's acceleration 
always has a component opposite its velocity.  
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Exercises 

1. If the instantaneous velocity does not change, will the average velocities for different 
intervals differ?  

2. Can the speed of an object be negative? If so, give an example. If not, explain why not. 

3. Consider the following controls in an automobile: gas pedal, brake, steering wheel. The 
controls in this list that cause an acceleration of the car are (a) all three controls (b) the gas 
pedal and the brake (c) only the brake (d) only the gas pedal.  

4. A hiker walks 2.00 km north and then 3.00 km east, all in 2.50 hours. Calculate the 
magnitude and direction of the hiker’s (a) displacement (in km) and (b) average velocity (in 
km/h) during those 2.50 hours. (c) What was her average speed during the same time 
interval?  

5. A car is traveling east at 25.0 m/s when it turns due north and accelerates to 35.0 m/s, all 
during a time of 6.00 s. Calculate the magnitude of the car’s average acceleration.  

6. A rabbit is moving in the positive x direction at 2.00 m/s when it spots a predator and 
accelerates to a velocity of 12.0 m/s along the negative y-axis, all in 1.50 s. Determine (a) the 
x component and (b) the y component of the rabbit’s acceleration. 

3.2 Projectile motion 

The ball or body is in motion through the air, the only forces acting on it being its weight and the 
resistance to its motion due to the air. A motion like this is called a projectile motion and is very 
common especially in sports, for example, the motion of a basketball. The jumps of insects such as 
locusts, fleas and grass hoppers are projectile motions. It has a number of applications, for example, 
police accident investigators want to determine car speed from the position of glass and other 
objects at the scene of an accident. In this section we are going discuss motion that is slightly more 
complicated.  

 

Examples 

1. Which of the following objects can’t be accelerating?  

a. An object moving with a constant speed;  

b. an object moving with a constant velocity; 

c. an object moving along a curve. 

 

Answer: b 

 

2. Explain whether the following particles do or do not have an acceleration: (a) a particle moving in 
a straight line with constant speed and (b) a particle moving around a curve with constant speed. 

 

𝑽̅
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Learning outcome 

After completing this section, students are expected to: 

 Recognize that projectile motion is common. 

 Explain how to obtain a simple mathematical model of projectile motion. 

 Know how to use the model to investigate real life projectile problems.  

 

3.2.1 Projectile Motion with Constant Acceleration 

Anyone who has observed a baseball in motion has observed projectile motion. The ball moves in a 
curved path, and its motion is simple to analyze if we make two assumptions: (1) the free-fall 
acceleration g is constant over the range of motion and is directed downward, and (2) the effect of 
air resistance is negligible. 

       

Figure 3.5: The parabolic trajectory of a particle that leaves the origin with a velocity of  ̅  

 

With these assumptions, we find that the path of a projectile, which we call its trajectory, is always a 
parabola (see Fig. 3.5). From the figure one can also understand how the x and y components of the 
velocities are varied through the motion.  The positive x- direction is horizontal and to the right, and 
the y-direction is vertical and positive upward. The most important experimental fact about 
projectile motion in two dimensions is that the horizontal and vertical motions are completely 
independent of each other. This means that motion in one direction has no effect on motion in the 
other direction.  

In general, the equations of constant acceleration developed in chapter- 2 follow separately for both 
the x-direction and the y-direction. An important difference is that the initial velocity now has two 
components, not just one as in that topic. We assume that at      the projectile leaves the origin 
with an initial velocity  ̅  at launching angle  . (See Fig.3.6).  
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   Figure 3.6: A projectile launched with an initial velocity  ̅  

 

 

From the definitions of the cosine and sine functions and Figure 3.6 we have 

 

  ̅     ̅        and   ̅     ̅                            3.10  

 

where   ̅  is the initial velocity (at    ) in the x-direction and  ̅    is the initial velocity in the y-

direction. For motion with constant acceleration in one dimension carry over to the two-dimensional 
case; there is one set of three equations for each direction, with the initial velocities modified as just 
discussed. In the x-direction, with  ̅  constant, we have 

 

                                         
 

 
   

               
      

               3.11 

             

where  ̅     ̅     . In the y-direction, we have 

 

                                        
 

 
                  

      
             3.12 

 

where  ̅     ̅      and   ̅  is constant. The object’s speed can be calculated from the components 

of the velocity using the Pythagorean theorem 

 

    √  
     

                                                                                 3.13 

 

The angle that the velocity vector makes with the x-axis is given by 

 

          (
  

  
)                   3.14 
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The kinematic equations are easily adapted and simplified for projectiles close to the surface of the 
Earth. In this case, assuming air friction is negligible, the acceleration in the x-direction is 0 (because 
air resistance is neglected). This means that  ̅   , and the projectile’s velocity component along 
the x-direction remains constant. If the initial value of the velocity component in the x-direction is 
 ̅     ̅     , then this is also the value of  ̅   at any later time, so 

 ̅     ̅     ̅                    3.15 

 

whereas the horizontal displacement is simply 

 

         ̅                     3.16 

 

For the motion in the y-direction, we make the substitution  ̅     and  ̅     ̅      

in Equations 3.12, giving 

 

              

               
 

 
    

   
                       3.17 

 

The important facts of projectile motion can be summarized as follows: 

1. Provided air resistance is negligible, the horizontal component of the velocity  ̅ .  remains 
constant because there is no horizontal component of acceleration.  

2. The vertical component of the acceleration is equal to the free-fall acceleration   . 

3. The vertical component of the velocity     and the displacement in the y - direction are 

identical to those of a freely falling body.  

4. Projectile motion can be described as a superposition of two independent motions in the x- 
and y-directions. 

 

Let us derive the trajectory or the path of the motion to do so let us consider the horizontal and 
vertical displacement of the motion which is mathematically given in the following manner 
respectively. 

 

                   and                         
 

 
                 3.18 

 

It is possible to get the following relation from horizontal displacement 
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Examples 

1. From the results in Eqs. (3.18) and (3.20) drive (a) The maximum height to which a 
projectile rise above the horizontal plan of the projection (b) The maximum horizontal 
displacement (Range) (c) The total time taken by the object to return to the same level. 

Solution: 

(a) To calculate it, we make use of the fact that the velocity       is zero at maximum height 

and let us assume that the time taken by the projectile to reach the maximum height is t1. 

It is clear that the y-component of velocity is given as: 

                                  

 

Thus,       
      

 
       (i) 

If we substitute Eq (i) in to the y-component of Equation 3.20, we obtain the maximum vertical 
displacement.  

 

          (
      

 
)  

 

 
(
      

 
)
 
    (ii) 

 

   
  

2   2 

  
          (iii) 

 

(b) The total time is given by           
       

 
        

(c) If we substitute the total time in to the horizontal displacement of Eq. 3.18, we can get 
the horizontal displacement. 

   
              

 
  

  
2     

 
       (iv) 

 

N.B: There are two angles of projection for the same horizontal range   and  9 °    

  

2. A jet of water flows from a hosepipe with speed 40m/s at an angle of 600 to the 
horizontal. Given that the particles of water travel as projectiles, find the equation of the 
path of the jet.  

Solution:  

To find the equation of the path substitute V0 = 40 m/s   = 600 in to Eqs. 3.19 and 3.20.  

 

   
  

      
  = 

  

       ⁄       °
  

  

  
      (i) 
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Substitute Eq (i) into Eq 20, then we will get  

 

     
  

  
   6   

   2

       ⁄  2   2  
  

 

                   73          5           (ii) 

Eq (ii) can be rewritten as:                     73         5     

 

 

    
  

      
         3.19 

 

Now substitute the time constant in the vertical displacement of Eq.3.18 and we can get the 
trajectory or the path of the motion. 

 

               
   2

   
2   2 

        3.20 

 

 

 

 

Exercise  

1. Make a list of the quantities you think determine the motion of a projectile such as a 
basketball which do you think are the most important?  

2. When a bullet is fired horizontally, it takes the same amount of time to reach the ground as 
bullet dropped from rest from the same height. Yes or No  

3. Suppose you are running at constant velocity and you wish to throw a ball such that you will 
catch it as it comes back down. In what direction should you throw the ball relative to you? 
(a) straight up (b) at an angle to the ground that depends on your running speed (c) in the 
forward direction.  

4. As a projectile moves in its parabolic path, where are the velocity and acceleration vectors 
perpendicular to each other? (a) Everywhere along the projectile’s path, (b) at the peak of its 
path, (c) nowhere along its path (d) not enough information is given.  
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Exercises 

 𝑦    𝑉𝑜𝑠𝑖𝑛𝜃 𝑡   
 

 
𝑔𝑡   

     𝑚     4 9 𝑚 𝑠 ⁄  𝑡  
𝑡  4 5  𝑠𝑒𝑐 

 𝑥   𝑉 𝑥𝑡  4  𝑚 𝑠⁄  4 5  𝑠   8  𝑚 

Example 

An Alaskan rescue plane drops a package of emergency rations to stranded hikers, as shown in 
the following figure. The plane is traveling horizontally at 40 m/s at a height of 100 m above the 
ground. Neglect air resistance. (a) Where does the package strike the ground relative to the 
point at which it was released? (b) What are the horizontal and vertical components of the 
velocity of the package just before it hits the ground? (c) What is the angle of the impact? 

 

Solution:  

(a) First we have to get the time "t" where the package strike the ground by considering the 
vertical displacement (see Eq.3.18). Here 𝑉 𝑦    𝑎𝑛𝑑 𝑦𝑓        𝑚  

 

To calculate the horizontal displacement, let us substitute the time found here in to the 
following mathematical relation:  

 

𝑉𝑥   𝑉  𝐶𝑜𝑠𝜃    4  𝑚 𝑠⁄  𝑐𝑜𝑠  4  𝑚 𝑠⁄  

𝑉𝑦   𝑉 𝑠𝑖𝑛𝜃  𝑔𝑡    9 8  𝑚
𝑠    4 5  𝑠   44 3𝑚 𝑠⁄  

 

(b) Here we have to Find the x   and y-components of the velocity at the time of impact 

 

(c) To get the angle of impact ( ) let us use the following mathematical relation i.e., 

 

𝑡𝑎𝑛𝜃   
𝑉𝑦

𝑉𝑥
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1. A projectile is thrown with an initial velocity x i + y j. The range of the projectile is twice the 
maximum height of the projectile calculate the ratio of y/x.  

2. A tennis player makes a return at a speed of 15m/s and at a height of 3m to land in the court 
at a horizontal distance of 12m from her. What are the possible angles of projection of the 
ball? 

3. A grasshopper jumps a horizontal distance of 1.5 m from rest, with an initial velocity at a 
35.0° angle with respect to the horizontal. Find (a) the initial speed of the grasshopper and 
(b) the maximum height reached. 

4. A ball is thrown upward from the top of a building at an angle of 25.0° above the horizontal 
and with an initial speed of 28.0 m/s. The point of release is 55.0 m above the ground. (a) 
How long does it take for the ball to hit the ground? (b) Find the ball’s speed at impact. 
(c) Find the horizontal range of the ball. Neglect air resistance. 

 

3.3 Kinematics of circular motion  

We have studied the kinematics and dynamics of motion using Cartesian co-ordinates. For example, 
we have studied motion in one dimension, collisions in one dimension and some problems in two 
dimensions. When a mass moves in a circle we can use Cartesian co-ordinates to describe its 
behavior, but it is a lot easier if we use angular co-ordinates. Although circular motion sounds kind of 
trivial, it isn't. To a good approximation the motion of the earth around the sun is on a circle and the 
analysis of MRI signals from the body depends on understanding a kind of circular motion.  

Learning outcome 

After completing this section, students are expected to: 

 Define uniform circular motion. 

 Explain how radial and tangential accelerations are produced. 

 Formulate kinematics of uniform circular motion. 

 Understand and apply a problem-solving procedure to solve problems related to uniform 
circular motion.  

3.3.1 Uniform Circular Motion 

Figure 3.7a shows a car moving in a circular path with constant speed v. Such motion is called   
uniform circular motion, and occurs in many situations. It is often surprising to students to find that 
even though an object moves at a constant speed in a circular path, it still has acceleration because 
there is continues change in the direction of the velocity (see Fig.3.7b and 3.7c). The velocity vector 
is always tangent to the path of the object and perpendicular to the radius of the circular path. We 
now show that the acceleration vector in uniform circular motion is always perpendicular to the path 
and always points toward the centre of the circle. An acceleration of this nature is called a 
centripetal acceleration (centripetal means centre-seeking), and its magnitude is: 
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Figure 3.7: A car moving in a circular path with constant speed  

 

Remember that kinematics is described by the position,  ̅, the velocity  ̅ and the acceleration  ̅. 
What are the corresponding kinematical quantities for a mass moving in a circle? To do so, let us first 
define the time taken by the particle to complete one complete circle. The time interval it takes the 
particle to go around the circle of radius r once, completing one revolution (abbreviated rev.) is 
called period and represented by symbol T. For a particle moving with constant speed, speed is 
simply distance/time. The particle moves once around a circle of radius r and travels the 
circumference of 2πr is represented by: 

 

   
   

 
        3.21 

 

We can describe the position of a particular in circular motion by its distance r from the center of the 
circle and its angle θ from the positive x-axis (See Fig.3.8). 

 

  

Figure 3.8: Position of particle and relation between its position r and angle θ 

To define the average angular velocity    , let us conceder the change in angular position from an 
initial angular position    at time    to a final angular position    at a later time    (See Fig.3.9).  
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Figure 3.9: A particle moving with angular velocity ω. 

 

Thus, the average angular velocity is mathematically defined as 

 

     
  

  
 

      

     1
       3.22 

 

in a manner which is completely analogous to the definition of velocity in terms of position. 

 

Note: The rate at which a particle's angular position is changing as it moves around a circle. 
Represented by symbol ω which is a lowercase Greek omega. The units rad/s, rev/s, and rev/min are 
all common units. In the case of uniform circular motion, the magnitude of centripetal acceleration is 
constant and this acceleration comes due to changing direction rather than changing speed. 
Acceleration vector points toward the center of the circle.  (See Fig.3.10). 

 

 



General Physics Module Phys 1011 AAU 

  

Kinematics in Two Dimensions 82 

 

Figure 3.10: Representation of uniform circular motion 

Note: Centripetal acceleration is constant during uniform circular motion, but the direction of 
acceleration is constantly changing. Thus, the constant-acceleration kinematics equations do not 
apply to circular motion.  

 

The instantaneous value of    is the limit in which      . Similarly, the angular acceleration is 
defined as, 

 

     
  

   
  

      

  
        3.23 

 

Furthermore, all of the constant acceleration formulae and understanding of graphs of position 
versus time are completely analogous. For constant angular acceleration we then have, 

 

                   3.24 

         
 

 
           3.25 

and  

   
     

              3.26 

 

The bottom line is that you can take all of the equations you know for linear kinematics in one 
dimension and make the replacement    ,   ̅    and   ̅    and you have the correct 
equations for angular kinematics on a circle. Note that in angular problems counterclockwise is 
positive. It is also possible to get the relations between linear and angular kinematics. The key thing 
to note is that the length of the arc around the circle is related to its angle through (See Fig.3.8): 

 

            (arc-length) 

 

Of course, if       , then we go all the way around the circle and so have covered a 
circumference, so      . Now that we know the relationship between arc-length and angle, it is 
easy to find the relationship between angular velocity and linear velocity using, 

 

   ̅   
  

  
   

  

  
            3.27 

 

A similar argument shows that the linear and angular accelerations are related by, 

                               ̅                                                                     3.28 

 

Note:  

Circular motion does not produce an outward force and it does not persist without a force. 
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3.3.2 Tangential and Radial Acceleration 

Let us consider the motion of a particle along a smooth curved path where the velocity changes both 
in direction and in magnitude, as described in Figure 3.11. In this situation, the velocity vector is 
always tangent to the path; however, the acceleration vector  ̅ is at some angle to the path. At each 
of three points A, B, and C in Figure 3.11.  

Examples 

1. The earth takes one year to go around the sun. What is its angular velocity 𝜔? Given that 
the earth sun distance is   5 𝑥      𝑚, what is the linear velocity of the earth with 
respect to the sun? 

Solution:  

The angular velocity is given by, 

 

𝜔𝑎𝑣   
 𝜃

 𝑡
 

 𝜋

36 ×  4 × 36  𝑠
   𝑥   7 𝑟𝑎𝑑 𝑠⁄  

𝑣̅  𝑟𝜔     5 ×     𝑚    𝑥   7 𝑟𝑎𝑑 𝑠⁄   3 ×    𝑚 𝑠⁄  

𝑎̅𝑡   
 𝑉

 𝑡
  

6𝑚 𝑠⁄  5𝑚 𝑠⁄

  𝑠
   5 𝑚 𝑠 ⁄  

The linear velocity of the earth with respect to the sun is then, 

 

 

2. A particle moves in a circle of radius 20 cm at a speed that increases uniformly. If the 
speed changes from 5 m/s to 6 m/s in 2 s, find the angular acceleration. 

Solution:  

It is given that speed of the particle increases uniformly which means the rate of change of speed 
is constant (with position or time). Since magnitude of tangential acceleration is nothing but the 
rate of change of linear speed, it is also constant here which again implies that the average and 
instantaneous values of the same are equal. 
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Figure 3.11: Motion of a particle along a smooth curve 

 

The total acceleration vector  ̅ can be written as the vector sum of the radial ( ̅ ) and tangential ( ̅ ) 
component vectors:  

 

   ̅    ̅    ̅         3.29 

 

The tangential acceleration component causes the change in the speed of the particle. This 
component is parallel to the tangential velocity and is given by: 

 

 ̅   
   

  
        3.30 

 

The radial acceleration component arises from the change in direction of the velocity vector and is 
given by 

 ̅     ̅   
  

 
       3.31 

 

Where r is the radius of curvature of the path at the point in question. The negative sign indicates 
that the direction of the centripetal acceleration is toward the centre of the circle representing the 
radius of curvature, which is opposite the direction of the radial unit vector r, which always points 
away from the centre of the circle. Because  ̅  and  ̅  are perpendicular component vectors of  ̅, it 
follows that the magnitude of  ̅  is given by: 

 

 ̅   √  
     

        3.32 

 

At given speed,  ̅  is large when the radius of curvature is small (as at points A and B in Fig. 2.7) and 
small when r is large (such as at point C). The direction of  ̅  is either in the same direction as V (if V 
is increasing) or opposite V (if V is decreasing). 
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Exercises: 

1. A particle moves along a path and its speed increases with time. In which of the following 
cases are its acceleration and velocity vectors parallel? (a) the path is circular (b) the path is 
straight (c) the path is a parabola (d) never. 

2. A particle moves along a path and its speed increases with time. In which of the following 
cases are its acceleration and velocity vectors perpendicular everywhere along the path? (a) 
the path is circular (b) the path is straight (c) the path is a parabola (d) never. 

Example 

1. A car exhibits a constant acceleration of 0.300 m/s2 parallel to the roadway. The car 
passes over a rise in the roadway such that the top of the rise is shaped like a circle of 
radius 500 m. At the moment the car is at the top of the rise, its velocity vector is 
horizontal and has a magnitude of 6.00 m/s. What is the direction of the total acceleration 
vector for the car at this instant? 

Solution:  

Conceptualize the situation using the figure below. Because the car is moving along a curved path, 
we can categorize this as a problem involving a particle experiencing both tangential and radial 
acceleration. Now we recognize that this is a relatively simple plug-in problem. The radial 
acceleration is given by Eqs.3.31and 3.32. With V = 6.00 m/s and r = 500 m, we find that:  

 

𝑎̅𝑟    𝑎̅𝑐   
𝑉2

𝑟
  

  𝑚 𝑠⁄  2

    𝑚
      7  𝑚 𝑠   

 

 

The radial acceleration is directed straight downward while the tangential acceleration vector has 
magnitude 0.300 m/s2 and is horizontal. Because 𝒂̅   𝒂̅𝒕   𝒂̅𝒓, the magnitude of 𝒂̅ is 

 

𝑎̅   √𝑎𝑟
   𝑎𝑡

   √    7        3      3 9 𝑚 𝑠 ⁄   

 

If   is the angle between a and the horizontal, then 

  

𝜙   𝑡𝑎𝑛  (
 𝑎̅𝑟

̅
)   (

   7 
)     3 5 
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3. A fan moves with angular velocity of 10π rad/s. Now it is switched off and an angular 
retardation of 2π rad/s² is produced. Find the number of rotations made by the fan before it 
stops. 

4. For an object in uniform circular motion rank the changes listed below regarding the effect 
each would produce on the magnitude of the centripetal acceleration of the objects? 
Assume all other parameters stay constant except that noted in the description of the 
change.  

Change A: The speed of the object doubles. 

Change B: The radius of the motion triples. 

Change C: The mass of the object triples. 

Change D: The radius of the motion becomes half as big. 

Change E: The speed of the object becomes half as big.  

5. The angular velocity (ω) of a particle depends on its angular position (θ, measured with 
respect to a certain line of reference) by the rule ω = 2√θ. Find the angular acceleration α as 
a function of θ. 

 

3.4 Summary 

General Relations  

The average velocity of an object is the object's displacement during a time interval dived by the 
time interval.  

     ⃗⃗    
   ̅

   
 

Speed is the magnitude of the velocity, | ⃗⃗| 

The average acceleration of an object given by  ̅     ̅    

Instantaneous acceleration of an object given by  ⃗           ⃗⃗    

Projectile motion  

The position of a projectile launched with initial speed V0 at an angle  with the horizontal is given by 
the vector equation: 

        

 ⃗      ⃗   ⃗⃗    
 

 
 ⃗      

 

In terms of horizontal (x) and vertical (y) components 

 

             s       and            s      
 

 
    

 



General Physics Module Phys 1011 AAU 

  

Kinematics in Two Dimensions 87 

 

The maximum height the projectile reaches above the point of release is    
  

2   2 

  
    

The time of flight of the projectile is      
       

 
 

The range of the projectile is           
  

2     

 
 

Uniform Circular 

o The centripetal acceleration is given as        
 2

 
 

o The period of the motion is given as         
   

 
 

o The total acceleration vector  ̅ can be written as   ̅    ̅    ̅  

o The radial components of acceleration express as   ̅     ̅   
  

 
 

o The tangential components of acceleration express as      
   

  
 

o The magnitude of   ̅  is given by        √  
     

  

 

3.5 Conceptual Questions 

1. Neglecting air resistance, is the magnitude of the velocity vector at impact greater than, less 
than, or equal to the magnitude of the initial velocity vector? Why?  

2. True/False: Because the x-component of the displacement doesn’t depend explicitly on g, 
the horizontal distance travelled doesn’t depend on the acceleration of gravity. 

3. A person standing at the edge of a cliff throws one ball straight up and another ball straight 
down, each at the same initial speed. Neglecting air resistance, which ball hits the ground 
below the cliff with the greater speed: 

a. ball initially thrown upward; 

b. ball initially thrown downward; 

c. neither; they both hit at the same speed. 

4. Suppose you are carrying a ball and running at constant velocity on level ground. You wish to 
throw the ball and catch it as it comes back down. Neglecting air resistance, should you (a) 
throw the ball at an angle of about 45° above the horizontal and maintain the same speed, 
(b) throw the ball straight up in the air and slow down to catch it, or (c) throw the ball 
straight up in the air and maintain the same speed? 

5. A ball is projected horizontally from the top of a building. One second later, another ball is 
projected horizontally from the same point with the same velocity. (a) At what point in the 
motion will the balls be closest to each other? (b) Will the first ball always be traveling faster 
than the second? (c) What will be the time difference between them when the balls hit the 
ground? (d) Can the horizontal projection velocity of the second ball be changed so that the 
balls arrive at the ground at the same time?  
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6. A projectile is launched at some angle to the horizontal with some initial speed   , air 
resistance is negligible. (a) Is the projectile a freely falling body? (b) What is its acceleration 
in the vertical direction? (c) What is its acceleration in the horizontal direction? 

7. Two projectiles are thrown with the same initial speed, one at an angle θ with respect to the 
level ground and the other at angle 900 - θ. Both projectiles strike the ground at the same 
distance from the projection point. Are both projectiles in the air for the same length of 
time? 

8. A ball is thrown upward in the air by a passenger on a train that is moving with constant 
velocity. (a) Describe the path of the ball as seen by the passenger. Describe the path as 
seen by a stationary observer outside the train. (b) How would these observations change if 
the train were accelerating along the track?  

9. As a projectile moves in its parabolic path, where are the velocity and acceleration vectors 
perpendicular to each other? (a) Everywhere along the projectile’s path, (b) at the peak of its 
path, (c) nowhere along its path, or (d) not enough information is given.  

10. In uniform circular motion what will be the nature of acceleration, if the velocity remain 
constant? 

3.6 Problems 

1. How is it possible for a particle moving at constant speed to be accelerating? can a particle 
with constant velocity be accelerating at the same time?  

2. The co- ordinates of an object moving in the xy plane vary with time according to the 
equations x= -5m sin t and y= 4m- 5m cost, where t is in second.  

a) determine the components of the velocity and acceleration at t = 0  

b) write expressions for the position, velocity and acceleration vector at any time t >0.  

3. A projectile is fired up an incline (incline angle ) with an initial speed V0 at an angle 0 with 

respect to the horizontal (0 > ), as shown in Figure 3.12.  

a) show that the projectile travels a distance d up the incline, where  

  
   

               

      
 

b) For what value of 0 is d a maximum, and what is the maximum value?  

Figure 3.12 

                               

4. A golf ball leaves the ground at an angle  and hits a tree while moving horizontally at height 
h above the ground. If the tree is a horizontal distance of b from the point of projection, 
show that  

a) tan  = 2h/b  
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b) what is the initial velocity of the ball in terms of b and h?  

5. A rock is thrown upward from the level ground in such a way that the maximum height of its 
flight is equal to its horizontal range R. (a) At what angle u is the rock thrown? (b) In terms of 
the original range R, what is the range R the rock can attain if it is launched at the same 
speed but at the optimal angle for maximum range? (c) Would your answer to part (a) be 
different if the rock is thrown with the same speed on a different planet? Explain. 

6. A dive bomber has a velocity of 280 m/s at an angle   below the horizontal. When the 
altitude of the aircraft is 2.15 km, it releases a bomb, which subsequently hits a target on the 
ground. The magnitude of the displacement from the point of release of the bomb to the 
target is 3.25 km. Find the angle  . 

7. From the window of a building, a ball is tossed from a height    above the ground with an 
initial velocity of 8.00 m/s and angle of 20.0° below the horizontal. It strikes the ground 3.00 
s later. (a) If the base of the building is taken to be the origin of the coordinates, with 
upward the positive y  -  direction, what are the initial coordinates of the ball? (b) With the 
positive x-direction chosen to be out the window, find the x- and y components of the initial 
velocity. (c) Find the equations for the x  - and y   -  components of the position as functions 
of time. (d) How far horizontally from the base of the building does the ball strike the 
ground? (e) Find the height from which the ball was thrown. (f) How long does it take the 
ball to reach a point 10.0 m below the level of launching? 

8. A boy can throw a ball a maximum horizontal distance of R on a level field. How far can he 
throw the same ball vertically upward? Assume that his muscles give the ball the same 
speed in each case. 

9. An airplane in a holding pattern flies at constant altitude along a circular path of radius 3.50 
km. If the airplane rounds half the circle in    5 ×     , determine the magnitude of its (a) 
displacement and (b) average velocity during that time. (c) What is the airplane’s average 
speed during the same time interval? 

10. Suppose a rocket-propelled motorcycle is fired from rest horizontally across a canyon 1.00 
km wide. (a) What minimum constant acceleration in the x-direction must be provided by 
the engines so the cycle crosses safely if the opposite side is 0.750 km lower than the 
starting point? (b) At what speed does the motorcycle land if it maintains this constant 
horizontal component of acceleration? Neglect air drag, but remember that gravity is still 
acting in the negative y-direction. 

11. Young David who slew Goliath experimented with slings before tackling the giant. He found 
that he could revolve a sling of length 0.600 m at the rate of 8.00 rev/s. If he increased the 
length to 0.900 m, he could revolve the sling only 6.00 times per second. (a) Which rate of 
rotation gives the greater speed for the stone at the end of the sling? (b) What is the 
centripetal acceleration of the stone at 8.00 rev/s? (c) What is the centripetal acceleration at 
6.00 rev/s? 

12. An automobile whose speed is increasing at a rate of 0.60 m/s2 travels along a circular road 
of radius 20.0 m. When the instantaneous speed of the automobile is 4.0 m/s, find (a) the 
tangential acceleration component, (b) the centripetal acceleration component, and (c) the 
magnitude and direction of the total acceleration. 

13. A small steel ball is projected horizontally off the top landing of a long rectangular staircase 
(see Figure 3.13). The initial speed of the ball is 3m/s. Each step is 0.18m high and 0.3m 
wide. Which step does the ball strike first?  



General Physics Module Phys 1011 AAU 

  

Kinematics in Two Dimensions 90 

 

 

Figure 3.13 

 

14. A ball is thrown upward from the top of a building at an angle of 35.0° above the horizontal 
and with an initial speed of 25.0 m/s, as in Figure 3.12. The point of release is 45.0 m above 
the ground. (a) How long does it take for the ball to hit the ground? (b) Find the ball’s speed 
at impact. (c) Find the horizontal range of the ball. Neglect air resistance. 

15. Suppose the ball is thrown from the same height of Problem 13, at an angle of 30.0° below 
the horizontal. If it strikes the ground 57.0 m away, find (a) the time of flight, (b) the initial 
speed, and (c) the speed and the angle of the velocity vector with respect to the horizontal 
at impact 

16. A pendulum with a cord of length r = 1.00 m swings in a vertical plane (Fig. 3.14). When the 
pendulum is in the two horizontal positions   9   °  and    7 °, its speed is 5.00 m/s. 
(a) Find the magnitude of the radial and tangential acceleration for these positions. (b) Draw 
vector diagrams to determine the direction of the total acceleration for these two positions. 
(c) Calculate the magnitude and direction of the total acceleration.                             

 

Figure 3.14 
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4 Dynamics 

Learning Outcomes: 

After completing this Chapter, students are expected to: 

 define the term force, 

 understand force as a measure of interactions between objects, 

 know the types of interactions; distinguish between contact and field forces, 

 understand the four basic forces that underlie the processes in nature, 

 define mass and inertia, 

 state and understand Newton's three laws of motion, 

 define normal and gravitational forces, 

 apply Newton's laws of motion to solve problems involving a variety of forces, 

 integrate concepts from kinematics to solve problems using Newton's laws of motion, 

 define friction and discuss the factors that determine it value, 

 describe the types of friction, 

 calculate the magnitude of static and kinetic friction, 

 define uniform circular motion, and establish the expression for centripetal force, 

 explain the centrifugal force and understand it as a fictitious force, and 

 Calculate coefficient of friction on a car tire as well as ideal speed and angle of a car on a 
turn. 

 

Introduction: 

In the preceding chapters, we have discussed the concept of motion but not what caused the 
motion. Indeed, what causes objects to move are forces. The part of mechanics which studies both 
motion and forces that causes the motion is called dynamics. Chapter 4 introduces Newton's three 
laws of motion and the dynamics of uniform circular motion. The three laws are simple and sensible. 
The first law states that a force must be applied to an object in order to change its velocity. Changing 
an object's velocity means accelerating it, which implies a relationship between force and 
acceleration. This relationship, the second law, states that the net force on an object equals the 
object's mass times its acceleration. Finally, the third law says that whenever we push on something, 
it pushes back with equal force in the opposite direction. In particular, you will learn about the 
concept of force as a measure of interaction, the fundamental types of interactions, the three 
Newton's laws of motion, motion with friction as well as the dynamics of uniform circular motion. 

4.1 The Concept of Force as a Measure of Interaction 

After completing this section, students are expected to: 

 define the term force, 

 understand force as a measure of interaction between objects, and 

 explain the vector nature of force. 
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4.1.1 The Concept of Force: 

A force is commonly imagined as a push or a pull on some object. When you push or pull an object 
away or towards you, you exert a force on it. Similarly, you exert a force on a ball when you throw or 
kick it. In these examples, the word force refers to an interaction with an object by means of 
muscular activity and some change in the object's velocity. Whenever there is an interaction 
between two objects, there is a force acting on each other. When the interaction ceases, the two 
objects no longer experience a force. Forces exist only as a result of an interaction. In brief, the 
effects of forces are: 

 

 to accelerate or stop an object, 

 to change the direction of a moving object, and 

 to change the shape of an object. 

 

4.1.2 The Vector Nature of Force: 

It is possible to use the deformation of a spring to measure force. Suppose a vertical force is applied 
to a spring scale that has a fixed upper end as shown in Fig. 4.1a. The spring elongates when the 
force is applied, and a pointer on the scale reads the extension of the spring. If the spring is 

calibrated such that a force  ⃗  (with a magnitude of 1.0 unit) as the force that produces a pointer 

reading of 1.0 cm. Next, if we apply a different downward force  ⃗  whose magnitude is twice that of 

the force  ⃗  as seen in Fig. 4.1b, the pointer moves to 2.0 cm. Figure 4.1c shows that the combined 
effect of the two collinear forces (i.e., forces acting in the same direction) is the sum of the effects of 

the individual forces, i.e.,  ⃗   ⃗   ⃗  3       . 

 

 

Figure 4.1: Illustration of the vector nature of force. 

 

Now suppose the two forces are applied simultaneously with  ⃗  downward and  ⃗  horizontal as 

illustrated in Fig. 4.1d. In this case, the pointer reads 2.24 cm. The single force F


 that would 

produce this same reading is the sum of the two vectors 
1F


 and 
2F


 as described in Fig. 4.1d. That is, 
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  √  
    

     4     , and its direction is                          5   
    6 .  

 

4.2 Types of Interactions  

Learning Outcomes: 

After completing this section, students are expected to: 

 define the terms contact and field forces, 

 distinguish between contact and field forces, and 

 understand the four basic forces that underlie the processes in nature. 

4.2.1 Contact and Field Forces: 

Force can be classified as either contact forces or field forces.  

 

1. Contact forces are forces that involve physical contact between two objects. A contact force 
must touch or be in contact with an object to cause a change. Examples of contact forces 
are: 

 

i. When a coiled spring is pulled, as in Fig. 4.2a, the spring stretches.  

ii. When a stationary cart is pulled, as in Fig. 4.2b, the cart moves.  

iii. When a ball is kicked, as in Fig. 4.2c, it is both deformed and set in motion.  

 

 

Figure 4.2: Examples of contact and field forces. In each case, a force is exerted on the object within 
the dashed boxed area by some 'agent' external to it. 

 

2. Field forces are forces that do not involve physical contact between two objects. A field 
force is sometimes referred to as "action at a distance" force. The concept of field force may 
be explained as follows: "An object of mass M, such as the Sun, creates an invisible influence 
that stretches throughout space. A second object of mass m, such as Earth, interacts with the 
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field of the Sun, not directly with the Sun itself." So, the force of gravitational attraction 
between two objects, illustrated in Figure 4.2d, is an example of a field force. The force of 
gravity keeps objects bound to Earth and also gives rise to what we call the weight of those 
objects.  

 

Other examples of field forces are (i) the electric force that one electric charge exerts on another 
(Fig. 4.2e), such as the charges of an electron and proton that form a hydrogen atom; and (ii) The 
force a bar magnet exerts on a piece of iron (Fig. 4.2f). 

 

The distinction between contact forces and field forces is not as sharp as discussed above. When 
examined at the atomic level, all the forces that are classified as contact forces turn out to be caused 
by electric (field) forces of the type illustrated in Fig. 4.2e. Nevertheless, in developing models for 
macroscopic phenomena, it is convenient to use both classifications of forces.  

 

4.2.2 Fundamental Forces - Forces of Nature: 

There are four fundamental forces in nature and all are field forces. These are gravitational force, 
electromagnetic force, strong nuclear force and weak nuclear force. 

1. The gravitational force 

It is the force between any two objects in the universe. It is an attractive force by virtue of their 
masses. The gravitational force is directly proportional to the product of the masses and inversely 
proportional to the square of the distance between them. Gravitational force is the weakest force 
among the fundamental forces of nature but has the greatest large-scale impact on the universe. 
Unlike the other forces, gravity works universally on all matter and energy, and is universally 
attractive. 

2. The electromagnetic force 

It is the force between charged particles such as the force between two electrons, or the force 
between two current carrying wires. It is attractive for unlike charges and repulsive for like charges. 
The electromagnetic force obeys inverse square law. It is very strong compared to the gravitational 
force. It is the combination of electrostatic and magnetic forces.  

3. The strong nuclear force 

It is the strongest of all the basic forces of nature. It, however, has the shortest range, of the order of 

m1510 . This force holds the protons and neutrons together in the nucleus of an atom.  

4. The weak nuclear force  

The weak force is a force that arises in most radioactive decay processes and plays an important 
role, for instance, in the nuclear reactions that generate the Sun's energy output. This force is not as 
weak as the gravitational force. 

 

4.3 Newton's Laws of Motion  

Isaac Newton proposed the laws of motion to offer a systematic method of calculating an object's 
motion due to forces exerted on it. This section discusses the three Newton's laws of motion. 
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Learning Outcomes: 

After completing this section, students are expected to: 

 state Newton's laws of motion, 

 state the first condition of equilibrium, 

 know about normal force and gravitational force, 

 distinguish between inertial and gravitational masses, 

 know about some of the applications of the laws, and 

 apply Newton's laws to solve related problems. 

 

4.3.1 Newton's First Law of Motion 

Consider a book lying on a table. Obviously, the book remains at rest if left alone. Now imagine 
pushing the book with a horizontal force great enough to overcome the force of friction between the 
book and the table, setting the book in motion. Because the magnitude of the applied force exceeds 
the magnitude of the friction force, the book accelerates. When the applied force is withdrawn, 
friction soon slows the book to a stop. 

 

Next, imagine pushing the book across a smooth, waxed floor. The book again comes to rest once 
the force is no longer applied, but not as quickly as before. Finally, if the book is moving on a 
horizontal frictionless surface, it continues to move in a straight line with constant velocity until it 
hits a wall or some other obstruction. 

 

Before about 1600, scientists felt that the natural state of matter was the state of rest. Galileo, 
however, devised thought experiments, such as an object moving on a frictionless surface, and 
concluded that "it's not the nature of an object to stop once set in motion, but rather to continue in 
its original state of motion". This observation was later formalized as Newton's first law of motion, 
which states that: 

 

An object moves with a velocity that is constant in magnitude and direction unless a nonzero net 
force acts on it. 

 

The net force on an object is defined as the vector sum of all external forces exerted on the object. 
External forces come from the object's environment. If an object's velocity isn't changing in either 
magnitude or direction, then its acceleration and the net force acting on it must both be zero. 

 

Remarks: Internal forces originate within the object itself and can't change the object's velocity. As a 
result, internal forces are not included in Newton's first law. It is not really possible to "pull yourself 
up by your own bootstraps." 
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4.3.1.1 Mass and Inertia:  

Imagine hitting a golf ball off a tee with a driver. If you are a good golfer, the ball will sail over two 
hundred yards down the fairway. Now imagine teeing up a bowling ball and striking it with the same 
club. Your club would probably break, you might sprain your wrist, and the bowling ball, at best, 
would fall off the tee, take half a roll, and come to rest. 

 

From this thought experiment, we conclude that although both balls resist changes in their state of 
motion, the bowling ball offers much more effective resistance. The tendency of an object to 
continue in its original state of motion is called inertia. 

 

Although inertia is the tendency of an object to continue its motion in the absence of a force, mass is 
a measure of the object's resistance to changes in its motion due to a force. This kind of mass is 
often called inertial mass because it's associated with inertia. The greater the mass of a body, the 
less it accelerates under the action of a given applied force. The SI unit of mass is the kilogram. Mass 
is a scalar quantity that obeys the rules of ordinary arithmetic. 

 

 

 

 

Example: Newton's First law and Inertia: 

 

a) A book lying on the table will remain at rest, until it is moved by some external agencies. 

b) A person standing in a bus falls backward when the bus suddenly starts moving. This is 
because, the person who is initially at rest continues to be at rest even after the bus has 
started moving. 

c) A passenger sitting in a moving car falls forward, when the car stops suddenly. 

d) When a bus moving along a straight line takes a turn to the right, the passengers are thrown 
towards left. This is due to inertia which makes the passengers travel along the same 
straight line, even though the bus has turned towards the right. 

 

4.3.1.2 Applications of the first law: 

The following two examples illustrate Newton's first law in practice. 

 

(a) Seat Belts 

 

Inertia can be used to explain the operation of one type of seat belt mechanism. The purpose of the 
seat belt is to hold the passenger firmly in place relative to the car, to prevent serious injury in the 
event of an accident. Figure 4.3 illustrates how one type of shoulder harness operates. Under normal 
conditions, the ratchet turns freely to allow the harness to wind on or unwind from the pulley as the 
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passenger moves. In an accident, the car undergoes a large acceleration and rapidly comes to rest. 
Because of its inertia, the large block under the seat continues to slide forward along the tracks. The 
pin connection between the block and the rod causes the rod to pivot about its center and engage 
the ratchet wheel. At this point, the ratchet wheel locks in place and the harness no longer unwinds. 

 

 

Figure 4.3: A mechanical arrangement for an automobile seat belt. 

 

(b) Rockets 

 

A spaceship is launched into space. The force of the exploding gases pushes the rocket through the 
air into space. Once it is in space, the engines are switched off and it will keep on moving at a 
constant velocity. If the astronauts want to change the direction of the spaceship they need to fire 
an engine. This will then apply a force on the rocket and it will change its direction. 

 

4.3.2 Newton's Second Law of Motion 

Newton's first law explains what happens to an object that has no net force acting on it: The object 
either remains at rest or continues moving in a straight line with constant speed. Newton's second 
law answers the question of what happens to an object that does have a net force acting on it. 

 

Imagine pushing a block of ice across a frictionless horizontal surface. When you exert some 
horizontal force on the block, it moves with an acceleration of, say,      . If you apply a force twice 
as large, the acceleration doubles to 4    . Pushing three times as hard triples the acceleration, 
and so on. From such observations, we conclude that the acceleration of an object is directly 
proportional to the net force acting on it. 

 

Mass also affects acceleration. Suppose you stack identical blocks of ice on top of each other while 
pushing the stack with constant force. If the force applied to one block produces an acceleration of 
     , then the acceleration drops to half that value,      , when two blocks are pushed, to one-
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third the initial value when three blocks are pushed, and so on. We conclude that "the acceleration 
of an object is inversely proportional to its mass". These observations are summarized in Newton's 
second law as: 

 

The acceleration a


 of an object is directly proportional to the net force acting on it and inversely 
proportional to its mass. 

 

The constant of proportionality is equal to one, so in mathematical terms the preceding statement 
can be written 

 

     ⃗  
∑  ⃗

 
, 

 

where  ⃗ is the acceleration of the object, m  is its mass, and ∑  ⃗ is the vector sum of all forces acting 
on it. Multiplying through by  , we have 

 

amF


         (4.1) 

 

 

 

Figure 4.4: Illustration of Newton's second law of motion. 

 

Figure 4.4 illustrates the relationship between the mass, acceleration, and the net force. The second 
law is a vector equation, equivalent to the following three component equations: 

 

xx maF  ,        yy maF  , and zz maF  .   (4.2) 

 

Remarks:  When there is no net force on an object, its acceleration is zero, which means the 
velocity is constant. In other words, the acceleration on the object is zero, and hence the system is 
said to be in translational equilibrium. That is, 

 

0F


.         (4.3) 

 

According to Eq. (4.3), the body is either at rest or moving with constant velocity. Eq. (4.3.3) is 
commonly referred as the first condition of equilibrium. 
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Unit of Force 

  

The SI unit of force is the Newton. When 1 Newton of force acts on an object that has a mass of    , 

it produces an acceleration of 2/1 sm  in the object. From this definition and Newton's second law, 

we see that the Newton can be expressed in terms of the fundamental units of mass, length, and 
time as 

2/11 smkgN  .        (4.4) 

 

An external force is a force that acts on an object from 'agents' outside the system of interest. For 
example, in the Figure shown below the system of interest is the wagon plus the child in it. The two 
forces exerted by the other children are external forces. An internal force acts between elements of 
the system. Again, looking at the Figure, the force the child in the wagon exerts to hang onto the 
wagon is an internal force between elements of the system of interest. Only external forces affect 
the motion of a system, according to Newton's first law, while the internal forces actually cancel 
each other. You must define the boundaries of the system before you can determine which forces 
are external. Sometimes the system is obvious, whereas other times identifying the boundaries of a 
system is more subtle. The concept of a system is fundamental to many areas of physics, as is the 
correct application of Newton's laws. 

 

 

Examples: 

1. An airboat with mass   3 5 ×      , including the passenger, has an engine that 
produces a net horizontal force of 7 7 ×     , after accounting for forces of resistance 
(see Fig. 4.5).  
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Figure 4.5: A passenger moving on an airboat. 

 

a. Find the acceleration of the airboat.  

b. Starting from rest, how long does it take the airboat to reach a speed of        ?  

c. After reaching that speed, the pilot turns off the engine and drifts to a stop over a 
distance of 5    . Find the resistance force, assuming it is constant. 

 

Solution: 

a. The acceleration of the airboat is obtained using Newton's second law. i.e., 

 

2

2

2

/2.2
1050.3

1070.7
sm

kg

N

m

F
a

maF

net

net









. 

 

b. To find the time, we use the following equation: 

   

s
sm

sm

a

vv
t

atvv

45.5
/2.2

0/12
2

0

0











. 

 

c. After the engine is switched off, the only forces acting on the airboat is the 
resistance forces. Hence, first we calculate the acceleration due to resistance forces. 
That is, 

 

2
22

0

2

2

0

2

/44.1
0.502

)/12(0

2

2

sm
m

sm

x

vv
a

xavv














. 

 

Note that the acceleration is negative - indicating that the airboat is slowing down, i.e., decelerating. 
The corresponding resistance force is obtained using Newton's second law as: 

 

              3 5 ×           44       5 4 . 
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2. Two masses of        and    8   are connected by a mass less string. They are 
supported on a frictionless horizontal surface. A horizontal force of   4   is applied to 
the mass,   , as shown. Calculate the tension in the string between the two masses.  

 

 

 

Solution:  

In the y-direction, the net force in each mass is zero, i.e., the weights and the normal forces are 
equal but opposite, and hence 

     

∑    . 

 

On the other hand, the horizontal forces acting on the masses are: 

 

Mass, m1:  ∑            (a) 

 

Mass, m2:  ∑              (b) 

 

Substituting Eq. (a) into (b), we get 

 

   ∑              , 

 

so that the acceleration of the masses is 

 

      
  

 1  2
 

   

       
 4    . 

 

Then, substituting the value of the calculated acceleration into Eq. (a), we find the tension, T ,  in 
the string to be: 

 

                4      8 . 

 

 

3. Find the resultant of the concurrent forces shown below. 

 

40 N m2 𝑻⃗⃗⃗   m1 
  x 

  y 
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Solution: 

 Forces Components 

 x-components y-components 

           s              s        

           s37    6        s  37       

       5  s  8     5      5 s   8      

       4  s 9          4 s  9    4  

       5  s  8  53     3      5 s    8  53    4  

Sum NFR
i

ixx 18
5

1






 




5

1

20
i

iyy NFR

 

 

One can see from the table above that, total x-component of the force is     8  and the y-
component,       . Since these two are perpendicular, the magnitude of the resultant force is 

given by  

 

     √  
    

  √  8            6 9 , 

 

and its direction is 

𝑭𝟑  𝟓𝑵 
 

𝑭𝟓  𝟓𝑵 
 

𝑭𝟏  𝟏𝟎𝑵 
 

𝑭𝟐
 𝟐𝟎𝑵 

𝑭𝟒  𝟒𝑵 

𝟓𝟑𝟎 
𝟑𝟕𝟎

 𝝅𝒓𝟐

𝒚 

𝒙 
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01 0.48)11.1(tan

11.1
18

20
tan








N

N

R

R

x

y

. 

 

4. A block of weight W hangs from a cord, which is knotted at point O to two other cords, one 
fastened to the ceiling, the other to the wall, as shown. We wish to find the tension in these 
three cords, assuming the weights of the cords to be negligible. 

 

 

 

Solution:  

First, we resolve the forces into horizontal and vertical components, as shown in the free-body 
diagram. From the diagram, the forces sum up to zero at point O, so that the block is at equilibrium.  

From Newton’s first law and first condition of equilibrium, we have 

 

   ∑        53         

and  

    ∑        53       

 

From the figure,            

 

Hence,        

𝑭𝑹 

20N 
18N 

20N 

θ 

26.9N 

18N 

W 

O 
𝑻⃗⃗⃗𝟐 

𝑻⃗⃗⃗𝟏 

𝑻⃗⃗⃗𝟑 

𝟓𝟑𝟎 

O 

𝑻𝟏 

530 

𝑻𝟑𝒔𝒊𝒏𝟓𝟑
𝟎 

𝑻𝟐  

𝑻𝟑 

𝑻𝟑𝒄𝒐𝒔𝟓𝟑
𝟎 

W 

T1 
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From the above equations,    
 1

       
 

          55  

 

This equation can be used in the first equation:  

 

        53      55     53    577  

 

Thus, all the three tensions can be expressed as multiples of the weight of the block, which is 
assumed to be known. Therefore, if W = 200N,   

 

       , 

     577 ×        5 4 , 

      55 ×       3  . 

 

4.3.2.1 The Gravitational Force and Weight: 

All objects are attracted to the Earth. The attractive force exerted by the Earth on an object is called 

the gravitational force,  ⃗ . This force is directed toward the center of the Earth, and its magnitude is 

called the weight of the object. We know that a freely falling object experiences an acceleration  ⃗ 

acting toward the center of the Earth. Applying Newton's second law ∑  ⃗    ⃗ to a freely falling 

object of mass  , with  ⃗   ⃗ and ∑  ⃗   ⃗ , gives 

 

gmFg




. 

Therefore, the weight of an object, being defined as the magnitude of  ⃗ , is equal to   : 

 

mgFg  .        (4.5) 

 

Because it depends on g , weight varies with geographic location. Because g  decreases with 

increasing distance from the center of the Earth, objects weigh less at higher altitudes than at sea 
level. For example, suppose a student has a mass of 70.0 kg. The student's weight in a location 
where   9 8      is 686 N. At the top of a mountain, however, where   9 77    , the 
student's weight is only 684 N.  

 

Equation (4.5) quantifies the gravitational force on the object, but notice that this equation does not 
require the object to be moving. Even for a stationary object or for an object on which several forces 
act, Eq. (4.5) can be used to calculate the magnitude of the gravitational force. The mass m in Eq. 
(4.5) determines the strength of the gravitational attraction between the object and the Earth and is 
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called the gravitational mass. When mass m  is used as a measure of the resistance to changes in 
motion in response to an external force, it is known as the inertial mass. Even though gravitational 
mass is different in behavior from inertial mass, the values of the gravitational mass and inertial 
mass are the same. 

4.3.2.2 Applications of the second law 

A) Lifts 

Let us consider a 500 kg lift, with no passengers, hanging on a cable. The purpose of the cable is to 
pull the lift upwards so that it can reach the next floor or lower the lift so that it can move 
downwards to the floor below. We will look at five possible cases during the motion of the lift and 
apply our knowledge of Newton's second law of motion to the situation. The 5 cases are: (Let the 
upwards direction be the positive direction.) 

Case 1: The 500 kg lift is stationary at the second floor of a tall building. 

The lift is not accelerating. There must be a tension  ⃗⃗ from the cable acting on the 

lift and there must be a force due to gravity,  ⃗ . There are no other forces present 

and we can draw the free body diagram as shown to the right. We apply Newton's 
second law to the vertical direction (mass of the lift = m): 

   

g

g

R

FT

mFT

amF







)0(



 

The forces are equal in magnitude and opposite in direction. 

 

Case 2: The lift moves upwards at an acceleration of 1 m/s2. 

If the lift is accelerating, it means that there is a resultant force in the direction of the motion. This 

means that the force acting upwards is now greater than the force due to gravity  ⃗  (down). To find 

the magnitude of   ⃗⃗ applied by the cable we apply Newton’s second law to the vertical direction: 

 

)/1(

)/1(

2

2

smmFT

smmFT

amF

g

g

R








 

 

The answer makes sense as we need a bigger force upwards to cancel the effect of gravity as well as 
have a positive resultant force. 

 

Case 3: The lift moves at a constant velocity. 

When the lift moves at a constant velocity, the acceleration is zero, 
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 ⃗    ⃗ 
          

     

The forces are equal in magnitude and opposite in direction. It is common mistake to think that 
because the lift is moving there is a net force acting on it. It is only if it is accelerating that there is a 
net force acting. 

 

Case 4: The lift slows down at a rate of 2 m/s2  

The lift was moving upwards so this means that it is decelerating or accelerating in the direction 
opposite to the direction of motion. This means that the acceleration is in the negative direction. 

 ⃗    ⃗ 
               

              

As the lift is now slowing down there is a resultant force downwards. This means that the force 
acting downwards is greater than the force acting upwards. 

 

Case 5: The cable snaps 

When the cable snaps, the force that used to be acting upwards is no longer present. The only force 
that is present would be the force of gravity. The lift will fall freely and its acceleration. 

4.3.2.3 Apparent weight 

Your weight is the magnitude of the gravitational force acting on your body. When you stand in a lift 
that is stationery and then starts to accelerate upwards you feel you are pressed into the floor while 
the lift accelerates. You feel like you are heavier and your weight is more. When you are in a 
stationery lift that starts to accelerate downwards you feel lighter on your feet. You feel like your 
weight is less. 

 

Weight is measured through normal forces. When the lift accelerates upwards you feel a greater 
normal force acting on you as the force required to accelerate you upwards in addition to balancing 
out the gravitational force. 

 

When the lift accelerates downwards you feel a smaller normal force acting on you. This is because a 
net force downwards is required to accelerate you downwards. This phenomenon is called apparent 
weight because your weight didn't actually change. 

 

B) Rockets 

 

As with lifts, rockets also are examples of objects in vertical motion. The force of gravity pulls the 
rocket down while the thrust of the engine pushes the rocket upwards. The force that the engine 
exerts must overcome the force of gravity so that the rocket can accelerate upwards. The worked 
example below looks at the application of Newton’s second law in launching a rocket. 
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Example: 

A rocket (of mass 5000 kg) is launched vertically upwards into the sky at an acceleration of 20 m/s2. 
If the magnitude of the force due to gravity on the rocket is 49,000 N, calculate the magnitude and 

direction of the thrust of the rocket’s engines ( ⃗ ). 

 

Solution: 

Applying Newton's second law, we get 

 

 ⃗    ⃗ 
         

   49       5               
    49      

 

The force due to the thrust is 149,000 N upwards. 

 

4.3.3 Newton's Third Law of Motion 

Newton's third law of motion deals with the interaction between pairs of objects. For example, 
when we sit on a chair, our body exerts a downward force on the chair and the chair exerts an 
upward force on our body. There are two forces resulting from this interaction: a force on the chair 
and a force on our body. These two forces are called action and reaction forces. Newton’s third law 
explains the relation between these action forces. It states that: 

 

The action force is equal in magnitude to the reaction force and opposite in direction. 

 

That is, whenever one body exerts a certain force on a second body, the second body exerts an 
equal and opposite force on the first.  

 

Consider two bodies 1 and 2 exerting forces on each other. Let the force exerted on the body 1 by 

the body 2 be  ⃗   and the force exerted on the body 2 by the body 1 be  ⃗  . Then according to third 

law,  ⃗     ⃗  . 

 

One of these forces, say  ⃗   may be called as the action, whereas the other force  ⃗   may be called 
as the reaction or vice versa. It is to be noted that always the action and reaction do not act on the 
same body; they always act on different bodies. The action and reaction never cancel each other and 
the forces always exist in pair. 

 

The effect of third law of motion can be observed in day-to-day activities. Examples are: 
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i. When a man jumps from a boat to the shore, the boat moves away from him. The force he 
exerts on the boat (action) is responsible for its motion and his motion to the shore is due to 
the force of reaction exerted by the boat on him. 

ii. A swimmer pushes the water in the backward direction with a certain force (action) and the 
water pushes the swimmer in the forward direction with an equal and opposite force 
(reaction). 

iii. We will not be able to walk if there were no reaction force. In order to walk, we push our 
foot against the ground. The Earth in turn exerts an equal and opposite force. This force is 
inclined to the surface of the Earth. The vertical component of this force balances our weight 
and the horizontal component enables us to walk forward. 

iv. A bird flies by with the help of its wings. The wings of a bird push air downwards (action). In 
turn, the air reacts by pushing the bird upwards (reaction).  

 

Figure 4.7: A book held pushed to the wall. 

 

v. If you hold a book up against a wall you are exerting a force on the book (to keep it there) 
and the book is exerting a force back at you (to keep you from falling through the book), as 
shown in Fig. 4.7. These two forces (the force of the hand on the book (F1) and the force of 
the book on the hand (F2)) are an action-reaction pair of forces.  

There is another action-reaction pair of forces present in this situation. The book is pushing against 
the wall (action force) and the wall is pushing back at the book (reaction). The force of the book on 
the wall (F3) and the force of the wall on the book (F4) are shown in the diagram. 

 

Examples: 

1. A man of mass M = 75.0 kg and woman of mass m = 55.0 kg stand facing each other on an 
ice rink, both wearing ice skates. The woman pushes the man with a horizontal force of F = 
85.0 N in the positive x-direction. Assume the ice is frictionless. 

a. What is the man's acceleration?  

b. What is the reaction force acting on the woman?  

c. Calculate the woman's acceleration. 

 

Solution: 
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a. Applying Newton's second law for the man, we obtain 

 
      

   
 

 
 

     

7     
    3    . 

 

b. Now apply Newton's third law of motion, to find the reaction force R acting on the 
woman which has the same magnitude and opposite direction. That is, 

    

      85   . 

 

c. Finally, applying Newton's second law for the woman we obtain 

   

   
 

 
 

      

      
    55    . 

 

Note that the forces are equal and opposite each other, but the accelerations are not equal because 
the two masses differ from each other. 

 

2. A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in 
the Figure shown below. Her mass is 65.0 kg, the cart's is 12.0 kg, and the equipment's is 7.0 
kg. (a) Calculate the acceleration produced in the system when the professor exerts a 
backward force of 150 N on the floor. All forces opposing the motion, such as friction on the 
cart's wheels and air resistance, total 24.0 N. (b) Calculate the force the professor exerts on 
the cart. 

 

Solution: 

From the Figure (and the free-body diagrams) note the following: 

 

o Since all bodies accelerate as a unit, we define the system to be the professor, cart, 
and equipment. This is labelled System 1 in the Figure.  

o The professor pushes backward with a force  ⃗     of 150 N. According to Newton's 

third law, the floor exerts a forward reaction force  ⃗      of 150 N on System 1.  

o Because all motion is horizontal, we can assume there is no net force in the vertical 
direction. The problem is therefore one-dimensional along the horizontal direction.  

o As noted, the friction  ⃗ opposes the motion and is thus in the opposite direction of 

 ⃗     .  

o Also, note that we do not include the forces  ⃗     or  ⃗     in the free-body diagram 

of System 1, because these are internal forces, and we do not include  ⃗     because 

it acts on the floor, not on the system.  
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Figure: A professor pushes a cart of demonstration equipment. 

 

(a) From the free-body diagram of System 1, we find that the net external force on System 1 is 
given by 

 

                 5    4       6 . 

 

The mass of the system (System 1) is 

 

      65        7      84  . 

 

Therefore, the acceleration of the system is 

 

     
    

 
 

    

    
   5    . 

 

(b) Now, if we now define the system of interest to be the cart plus equipment (System 2 in the 
Figure), then the net external force on System 2 is the force the professor exerts on the cart 
minus friction,  .  
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The force she exerts on the cart,  ⃗    , is an external force acting on System 2.  ⃗     was internal to 

System 1, but it is external to System 2 and will enter Newton's second law for System 2. Thus, 

Newton's second law can be used to find  ⃗     . Starting with 

 

          , 

 

and noting that the magnitude of the net external force on System 2 is 

 

               , 

 

we solve for 
profF . That is, 

 

               . 

 

The value of   is given, so we must calculate net      . That can be done since both the acceleration 
and mass of System 2 are known. Using Newton's second law we see that 

 

          , 

 

where the mass of System 2 is kg0.19  (          9    ) and its acceleration was found to 

be     5     in Part (a). Thus, 

 

             9        5       8 5 . 

 

Thus, the force the Professor exerts on the cart becomes 

 

                

or          8 5   4    5  5 . 

 

Remark:  It is interesting that this force is significantly less than the 150 N force the professor 
exerted backward on the floor. Not all of that 150 N force is transmitted to the cart; some of it 
accelerates the professor. 

 

4.3.3.1 Application of the third law: 

Working of a rocket 
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The propulsion of a rocket is one of the most interesting examples of Newton's third law of motion. 
The rocket is a system whose mass varies with time. In a rocket, the gases at high temperature and 
pressure, produced by the combustion of the fuel, are ejected from a nozzle. The reaction of the 
escaping gases provides the necessary thrust for the launching and flight of the rocket. 

 

4.4 Motion with Friction 

Learning Outcomes: 

After completing this section, students are expected to: 

 define friction and know about the factors that affect friction, 

 define static friction and kinetic friction, 

 understand what limiting static friction mean,  

 mention some applications of friction, and 

 solve problems involving motion with friction. 

4.4.1 The Normal Force: 

If you put a brick on water it will sink because nothing balances the gravitational force. On the other 
hand, if you put a heavy box on the ground the gravitational force is balanced. We call the force that 
a surface exerts to balance the forces on an object in contact with that surface as the normal force. 
It may be defined as: 

 

The normal force is the force exerted by a surface on an object in contact with it. 

 

In generally, we may identify four most common four cases of the normal force acting on an object. 
These are discussed below:  

 

Case 1: The Normal Force on a Level Surface 

Figure 4.8a shows a block at rest on a flat surface. The two forces acting on the block are the normal 
force, acting upward, and the gravity force, directed downward. The free-body diagram for the block 
(See Fig. 8b) depicts just the forces acting on the block. Free-body diagrams include only the forces 
acting directly on the object in question. Forces or reaction forces acting on different bodies are not 
shown. For example, the reaction force to the gravity force acting on the block is the gravity force 
exerted by the block on the Earth, which doesn't appear in the block's free-body diagram.  
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Figure 4.8: (a) A block on a level surface and (b) Free-body diagram. 

 

The y-component (vertical direction) of the second law of motion, with 0ya , yields: 

 

∑      ,  

       

 

or       . 

 

It means that the normal force in this case is equal to the weight of the object. 

 

Case 2: The Normal Force on a Level Surface with an Applied Force 

Figure 4.9(I-a) shows a block at rest on a flat surface. The three forces acting on the block are the 
normal force, directed upward; the gravity force, directed downward; and an applied force, directed 

at a positive angle  .  

 

The y-component of the second law of motion yields: 

   

0sin  FmgnmaF yy . 

 

That equation can easily be solved for the normal force n: 

     

sinFmgn  . 
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(I)       (II)  

Figure 4.9: An applied force at (I-a) a positive angle and (II-a) a negative angle; and the 
corresponding free-body diagrams (I-b) and (II-b), respectively. 

 

Notice that if the angle is positive, as in Fig. 4.9(I-a), then the sine of the angle is positive, and the y-
component of the applied force supports some of the weight, reducing the normal force. That is, the 
sum of the normal force and the y-component of the applied force equals the magnitude of the 
weight. If the angle is negative, however, then the sine of the angle is also negative, making a 
positive contribution to the normal force, as illustrated in Fig. 4.9(II-b). The normal force must be 
larger, and in magnitude, equal to the sum of the weight and the y-component of the applied force. 

 

Case 3: The Normal Force on a Level Surface Under Acceleration 

Figure 4.10a shows a block on a flat surface that is under acceleration, such as in an elevator. The 
two forces acting on the block are the normal force, directed upward, and the gravity force, directed 
downward. An acceleration upward, however, will increase the magnitude of the normal force, 
because the normal force must not only compensate for gravity, but also provide the acceleration.  

 

 

Figure 4.10: (a) A block in an elevator accelerating upward and (b) the free-body diagram. 

 

The y-component of the second law of motion yields: 

   

yyy mamgnmaF  , 

 

or   ymamgn 
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As can be seen in Fig. 4.10b, the magnitude of the normal force vector must equal the sum of the 

magnitudes of the gravitational force and the inertial quantity, am


. 

 

Case 4: The Normal Force on a Slope 

A common variation on a second law problem is an object resting on a surface tilted at some 
constant angle. Although optional, in that circumstance a simplification of the problem can be 
achieved by selecting coordinates that are similarly tilted, with the    -axis running parallel to the 
slope and    -axis perpendicular to the slope, as shown in Fig. 4.11a.  

 

 

Figure 4.11: (a) A block on a slope, showing the forces acting on it. (b) In tilted coordinates, the 
gravity force has two components, one perpendicular to the slope and the other parallel to it. 

 

Using Fig. 4.11b, the force due to gravity can then be broken into two components,  

 

sin,' mgF gravx 
 and 

cos,' mgF gravy 
. 

 

The second law for the 'y -direction can be solved for the normal force: 

 

∑          

          , 

 

or,           . 

 

The normal force on a slope is equal in magnitude to the component of the gravity force 
perpendicular to the slope. It is also useful to know that the force on the block directed down the 
slope due to gravity is given by 

 

sin,' mgF gravx 
. 
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4.4.2 Friction 

Why does a box sliding on a surface eventually come to a stop? The answer is friction. Friction arises 
where two surfaces are in contact and moving relative to each other. 

 

Friction arises because the surfaces interact with each other. When the surface of one object slides 
over the surface of another, each body exerts a frictional force on the other. For example, if a book 
slides across a table, the table exerts a frictional force onto the book and the book exerts a frictional 
force onto the table. Frictional forces act parallel to surfaces. It may be defined as: 

 

Frictional force is the force that opposes the motion of an object in contact with a surface and it acts 
parallel to the surface the object is in contact with. 

The magnitude of the frictional force depends on  

 the type of the surface (its roughness) and  

 the magnitude of the normal force.  

 

Different surfaces will give rise to different frictional forces, even if the normal force is the same. 

Friction,  , is proportional to the magnitude of the normal force, n


. That is, 

 

   . 

 

For every surface we can determine a constant factor, known as the coefficient of friction. We know 
that static friction and kinetic friction have different magnitudes so we have different coefficients for 
the two types of friction: 

 

 s  is the coefficient of static friction 

 k  is the coefficient of kinetic friction 

 

A force is not always large enough to make an object move - for example a small applied force might 
not be able to move a heavy crate. The frictional force opposing the motion of the crate is equal to 
the applied force but acting in the opposite direction. This frictional force is called static friction. For 
static friction the force can vary up to some maximum value after which friction has been overcome 
and the object starts to move. So, we define a maximum value for the static friction by the following 
equation:  

 

           

 

When the applied force is greater than the maximum static frictional force, the object moves but still 
experiences friction. This is called kinetic friction. For kinetic friction the value remains the same 
regardless of the magnitude of the applied force. The magnitude of the kinetic friction is:  
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Remember: Static friction is present when the object is not moving and kinetic friction while the 
object is moving.  

 

Friction is very useful. The following examples illustrates some of the useful applications of friction: 

 

 If there was no friction and you tried to lift a ladder up against a wall, it would simply slide to 
the ground.  

 Rock climbers use friction to maintain their grip on cliffs.  

 The brakes of cars would be useless if it wasn't for friction. 

 When you rub your hands together fast and pressing hard you will feel that they get warm. 
This is heat created by the friction. 

 

Examples:  

1. A block rests on a horizontal surface. The normal force is 20 N. The coefficient of 
static friction between the block and the surface is 0.40 and the coefficient of kinetic 
friction is 0.20. 

a)  What is the magnitude of the frictional force exerted on the block while the 
block is at rest? 

b)  What will the magnitude of the frictional force be if a horizontal 
force of magnitude 5 N is exerted on the block? 

c)  What is the minimum force required to start the block moving? 

d)  What is the minimum force required to keep the block in motion 
once it has been started? 

e)  If the horizontal force is 10 N, determine the frictional force. 

 

Solution: 

a) The magnitude of the frictional force exerted on the block while the block is at rest is zero. It 
is because that friction arises only when an object is moving or tries to move (by applying a 
force).  

b) The maximum static frictional force is 

             4 ×      8   

 

But the applied force is    5 , which is less than        8  . Therefore, the block remains at 

rest with a frictional force equal to the applied force. That is, 

     5  
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c) The minimum force required to start the block moving is equal to maximum static frictional 
force. That is, 

            8   

 

d) The minimum force required to keep the block in motion once it has been started is  

                   4  

 

Note that the kinetic friction is less than the maximum static frictional force. 

 

e) Once the block is in motion the frictional force will be equal to   , calculated in part (d) 
(Provided that the applied force is not less   ). Therefore, 

       4 . 

 

2. A 10 kg box is placed on a table, as shown in the Fig. (a). A horizontal force of 
magnitude 32 N is applied to the box. A frictional force of magnitude 7 N is present 
between the surface and the box. 

a)  Draw a force diagram indicating all of the forces acting on the box. 

b)  Calculate the acceleration of the box. 

(a)  (b)  

 

Solution:  

a) The force diagram is that shown in the Fig. (b). Note that the forces 
in the vertical direction must be equal but opposite, that is, 

gFN


  (since the box is moving along the horizontal direction). 

b) To calculate the acceleration of the box we will be using Newton's 
second law. Therefore: 

 ⃗⃗⃗    ⃗⃗⃗ 

 ⃗⃗⃗   ⃗⃗⃗    ⃗⃗⃗ 

               

 ⃗⃗⃗                        

3. Two crates, m1 = 15 kg and m2 = 10 kg respectively, are connected with a thick rope 
according to the diagram. A force, to the right, of Fa = 500 N is applied. The boxes 
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move with an acceleration of a = 2 m/s2 to the right. One third of the total frictional 
force is acting on the 10 kg block and two thirds on the 15 kg block. Calculate: 

a) the magnitude and direction of the total frictional force present. 

b) the magnitude of the tension in the rope at T. 

 

Solution:  

(a) First draw the free-body diagram for the two masses. 

 

(a)     (b)  

Figure: The free-body diagram for the (a) 15 kg mass and (b) 10 kg mass. 

 

 

The net force on m1 is  ⃗    ⃗   ⃗   ⃗⃗ (            ). Applying Newton's second law for 

the 15 kg mass, we get 

 

   fT

fT

fa

R

FNT

smkgTFN

amTFF

amF

3
2

2

3
2

11

11

470

)/2()15(500










   (a) 

Next, applying Newton's second law for the 10 kg mass, we get 

 

   

fT

fT

f

R

FNT

smkgFT

amFT

amF

3
1

2

3
1

21

22

20

)/2()10(










                (b) 
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Then, solving Eqs. (a) and (b) simultaneously, we get the total frictional force, 
fTF  to be: 

       45  . 

(b) Finally, substituting the magnitude of     into the Eq. (b), we can determine the magnitude of 

the tension: 

NT 170 . 

The total force due to friction is 450 N to the left and the magnitude of the force of tension is 170 N. 

 

 

4. A man is pulling a m = 20 kg box with a rope that makes an angle of  = 600 with the 
horizontal. If he applies a force of magnitude Fa = 150 N and a frictional force of 
magnitude Ff = 15 N is present, calculate the acceleration of the box. 

 

 

Solution:  

The motion is horizontal and therefore we will only consider the forces in a horizontal direction. The 
free-body diagram is shown below: 

or  

Let us choose the positive x-direction (to the right) to be positive. The applied force is acting at an 
angle of 600 to the horizontal. The horizontal component of the applied force is 

         
     5      6    
   75  

To find the acceleration we apply Newton's second law: 
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Therefore, the acceleration is 2/3 sma  , to the right. 

 

5. As shown in the figure below, a block having a mass of 4.00 kg rests on a slope that 
makes an angle of 30.00 with the horizontal. If the coefficient of static friction 
between the block and the surface it rests upon is 0.650, calculate  

(a) the normal force,  

(b) the maximum static friction force, and  

(c) the actual static friction force required to prevent the block from 
moving. 

(d) Will the block begin to move or remain at rest? 

 

Solution: 

(a) The normal force is 

          4       9 8          3       

  33 9 . 

(b) The maximum force that static friction can exert on the block on this surface is given by 

             65 × 33 9          

(c) The Newton's second law applied for the x-direction, down the slope reads 

    ∑    

Setting 0xa , and using the expressions for the two forces acting parallel to the x-axis, the gravity 

force and static friction force, we get 

             

                  

so that
  

           4       9 8          3        9 6 . 

 

(d) In this case, the actual, required static friction force,     9 6 , is less than the maximum 
possible static friction force,       , so the block remains at rest on the slope.  
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4.5 Dynamics of Circular Motion 

Learning Outcomes: 

After completing this section, students are expected to: 

 define uniform circular motion and centripetal force, 

 list and explain some applications of centripetal force, and 

 calculate coefficient of friction on a car tire. 

 calculate ideal speed and angle of a car on a turn. 

 solve other problems related to uniform circular motion. 

4.5.1 Centripetal Force: 

An object can have a centripetal acceleration only if some external force acts on it. For a ball whirling 
in a circle at the end of a string, that force is the tension in the string. In the case of a car moving on 
a flat circular track, the force is friction between the car and track. A satellite in circular orbit around 
Earth has a centripetal acceleration due to the gravitational force between the satellite and Earth. In 
brief, the force of tension in the string of a yo-yo whirling in a vertical circle is an example of a 
centripetal force, as is the force of gravity on a satellite circling the Earth. 

 

Consider a puck of mass m that is tied to a string of length r and is being whirled at constant speed in 
a horizontal circular path, as illustrated in Fig. 4.12. Its weight is supported by a frictionless table. 
Why does the puck move in a circle? Because of its inertia, the tendency of the puck is to move in a 
straight line; however, the string prevents motion along a straight line by exerting a radial force on 

the puck - a tension force - that makes it follow the circular path. The tension T  is directed along 
the string toward the center of the circle, as shown in the Figure. 

 

Figure 4.12: A puck rotating in a horizontal plane at a constant speed, v . 

 

In general, converting Newton's second law to polar coordinates yields an equation relating the net 
centripetal force,   , acting on a given object to the centripetal acceleration. The magnitude of the 
net centripetal force equals the mass times the magnitude of the centripetal acceleration: 

        
  

 
.       (4.6) 
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A net force causing a centripetal acceleration acts toward the center of the circular path and results 
to a change in the direction of the velocity vector. If that force should vanish, the object would 
immediately leave its circular path and move along a straight line tangent to the circle at the point 
where the force vanished. 

 

Any force like gravitational force, frictional force, electric force, magnetic force etc. may act as a 
centripetal force. Some of the examples of centripetal force are: 

i. In the case of a stone tied to the end of a string whirled in a circular path, the centripetal 
force is provided by the tension in the string. 

ii. When a car takes a turn on the road, the frictional force between the tyres and the road 
provides the centripetal force. 

iii. In the case of planets revolving round the Sun or the Moon revolving round the Earth, the 
centripetal force is provided by the gravitational force of attraction between them.  

iv. For an electron revolving round the nucleus in a circular path, the electrostatic force of 
attraction between the electron and the nucleus provides the necessary centripetal force. 

4.5.2 Fictitious Forces 

Anyone who has ridden a merry-go-round as a child has experienced what feels like a "center-
fleeing" force. Holding onto the railing and moving toward the center feels like a walk up a steep hill. 

 

Figure 4.13: A fun-loving student loses her grip and falls along a line tangent to the rim of the merry-
go-round. 

 

Actually, this so-called centrifugal force is fictitious. In reality, the rider (See Fig 4.13) is exerting a 
centripetal force on her body with her hand and arm muscles. In addition, a smaller centripetal force 
is exerted by the static friction between her feet and the platform. If the rider's grip slipped, she 
wouldn’t be flung radially away; rather, she would go off on a straight line, tangent to the point in 
space where she let go of the railing. The rider lands at a point that is farther away from the center, 
but not by "fleeing the center" along a radial line. Instead, she travels perpendicular to a radial line, 
traversing an angular displacement while increasing her radial displacement. 

 

Other examples of centrifugal force are: 

 

(i) When a car is turning around a corner, the person sitting inside the car 
experiences an outward force. It is because of the fact that no 
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centripetal force is supplied by the person. Therefore, to avoid the 
outward ("center-fleeing") force, the person should exert an inward 
force. 

(ii) The normal force that prevents an object from falling toward the 
center of the Earth is a centrifugal force. 

 

Examples: 

1. A car travels at a constant speed of  3 4    on a level circular turn of radius 5    , as 
shown in the bird's-eye view in Fig. 4.14(a). What minimum coefficient of static friction,   , 
between the tires and roadway will allow the car to make the circular turn without sliding? 

(a)   (b)  

Figure 4.14: (a) A car travelling in a circular path. (b) Force diagram showing, the weight, the normal 
force, and the static friction force acting on the car. 

 

Solution: 

The forces acting on the car are shown in the free-body diagram shown in Fig. 4.14(b). Note that the 
radial component involves only the maximum static friction force,       : 

           
 2

 
    ,     (a) 

Newton's second law applied to the forces acting in the vertical direction results to: 

                              (b) 

Substituting Eq. (b) into (a), we get 

 
 2

 
     , 

and hence,  

   
 2

  
 

         2

               2 
   366. 

 

2. Consider a car that rounds a curved road of radius   3 6  and banked at an angle 
  3     (See Fig. 4.15).  If the car negotiates the curve too slowly, it tends to slip down 
the incline of the turn, whereas if it is going too fast, it may begin to slide up the incline.  



General Physics Module Phys 1011 AAU 

  

Dynamics 125 

 

a. Find the necessary centripetal acceleration on this banked curve so the car won't 
tend to slip down or slide up the incline (Neglect friction).  

b. Calculate the speed of the car. 

 

Solution: 

(a) Newton's second law applied to the car reads; 

  ⃗  ∑  ⃗   ⃗⃗    ⃗.    (a) 

Resolving the normal force, n


, into vertical and radial components (see Fig. 4.15(b)), we get the 
vertical (or y-) component of Eq. (a) to be 

∑      ⇒             

so that the normal force becomes 

  
  

    
.     (b) 

 

 

Figure 4.15: A car that rounds a curve banked at an angle  . (a) Force diagram for the car and (b) 
components of the forces 

 

 

Now the centripetal force which is supplied by the radial (or x-) component of the normal force that 
keeps the car on a circular path becomes 

∑           .    (c) 

Substituting Eq. (b) into (c), we obtain  

   
  

    
           .   (d) 

Then, the centripetal acceleration is obtained from the relation,        . Thus, using Eq. (d) we 
find that 

          9 8          3      5 8     . 
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(b) using the relation        , we obtain the speed of the car to be: 

  √    √ 36    5 8       43     . 

 

 

4.5.3 Applications of centripetal forces 

4.5.3.1 Motion in a vertical circle 

Let us consider a body of mass m  tied to one end of the string which is fixed at O  and it is moving 

in a vertical circle of radius r  about the point O  as shown in Fig. 4.16. The motion is circular but is 
not uniform, since the body speeds up while coming down and slows down while going up. 

 

Figure 4.16: Motion of a body in a vertical circle. 

 

Suppose the body is at P  at any instant of time t , and the tension T  in the string always acts 

towards O . The weight mg  of the body at P  is resolved along the string as cosmg  which acts 

outwards and sinmg , perpendicular to the string. When the body is at P , the following forces 

acts on it along the string. 

i. cosmg  acts along OP  (outwards) 

ii. tension T  acts along PO  (inwards) 

 

Thus, the net force on the body at P acting along            . This must provide the 
necessary centripetal force      . Therefore,  

         
  2

 
, 

so that the tension in the string becomes 

         
  2

 
.        (4.7) 
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At the lowest point A of the path, 00 , 1cos   and hence Eq. (4.7) reduces to: 

      
   

2

 
.       (4.8) 

At the highest point of the path, i.e. at B, 0180 . Hence, 1180cos 0  . Therefore, from Eq. 
(4.7), we obtain 

   
   

2

 
   .       (4.9) 

If 0BT , then the string remains taut while if 0BT , the string slackens and it becomes 

impossible to complete the motion in a vertical circle. 

If the velocity Bv  is decreased, the tension    in the string also decreases, and becomes zero at a 

certain minimum value of the speed called critical velocity. Let    be the minimum value of the 
velocity, then at      ,     . Therefore, from Eq. (4.9), we have 

 
  

2

 
     , 

from which, we get 

       √  .    (4.10) 

 

If the velocity of the body at the highest point B is below this critical velocity, the string becomes 
slack and the body falls downwards instead of moving along the circular path. In order to ensure that 

the velocity    at the top is not lesser than the critical velocity √  , the minimum velocity    at the 

lowest point should be in such a way that    should be √  . That means, the motion in a vertical 

circle is possible only if    √  . 

 

The velocity    of the body at the bottom point A can be obtained by using law of conservation of 
energy. When the stone rises from A to B, i.e., through a height 2r, its potential energy (P.E.) 
increases by an amount equal to the decrease in kinetic energy (K.E.). Thus, 

                              , 

i.e.,     
 

 
   

       
 

 
   

 .      (4.11) 

But from Eq. (4.10),   
     (since      ) and hence 

   √5  .        (4.12) 

Substituting    from Eq. (4.12) into (4.8), we have 

       (
   

 
)  6  .      (4.13) 

While rotating in a vertical circle, the object tied to the string must have a velocity greater than 

√5   or tension greater than mg6  at the lowest point, so that its velocity at the top is greater than 

√   or tension   . 
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An airplane while looping a vertical circle must have a velocity greater than √5   at the lowest 

point, so that its velocity at the top is greater than √  . In that case, a pilot sitting in the airplane 

will not fall. 

4.5.3.2 Motion on a level circular road 

When a vehicle goes around a level curved path, it should be acted upon by a centripetal force. 
While negotiating the curved path, the wheels of the car have a tendency to leave the curved path 
and regain the straight-line path. Frictional force between the tyres and the road opposes this 
tendency of the wheels. This static frictional force, therefore, acts towards the centre of the circular 
path and provides the necessary centripetal force. 

 

Figure 4.17: Vehicle on a level circular road. 

 

In Fig. 4.17, weight of the vehicle mg  acts vertically downwards.   ,    are the forces of normal 

reaction of the road on the wheels. As the road is level (horizontal),   ,    act vertically upwards. 
Obviously,  

        .        (4.14) 

Let s  be the coefficient of static friction between the tyres and the road.  Also, let    and    be the 

forces of friction between the tyres and the road, directed towards the centre of the curved path. 

        and       .     (4.15) 

If   is velocity of the vehicle while negotiating the curve, the centripetal force required is equal to 
     . As this force is provided only by the friction, we have 

    
 2

 
                , 

or,    
  2

 
     , 

since         . Solving for the velocity, we get 

  √    . 

Hence the maximum velocity with which a car can go around a level curve without skidding is 

  √    . The value of   depends on radius   of the curve and coefficient of friction    between 

the tyres and the road. 
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4.5.3.3 Banking of curved roads and tracks 

When a car goes round a level curve, the force of friction between the tyres and the road provides 
the necessary centripetal force. If the frictional force, which acts as centripetal force and keeps the 
body moving along the circular road is not enough to provide the necessary centripetal force, the car 
will skid. In order to avoid skidding, while going round a curved path the outer edge of the road is 
raised above the level of the inner edge. This is known as banking of curved roads or tracks. 

 

Bending of a cyclist round a curve 

 

A cyclist has to bend slightly towards the centre of the circular track in order to take a safe turn 
without slipping (See Fig. 4.18). 

 

Figure 4.18: Bending of a cyclist in a curved road. 

 

Figure 4.18 shows a cyclist taking a turn towards his right on a circular path of radius r . Let m  be 
the mass of the cyclist along with the bicycle and v , the velocity. When the cyclist negotiates the 

curve, he bends inwards from the vertical, by an angle  . Let R  be the reaction of the ground on 
the cyclist. The reaction R  may be resolved into two components:  

 

i. the component sinR , acting towards the centre of the curve providing necessary 
centripetal force for circular motion and  

ii. the component cosR , balancing the weight of the cyclist along with the bicycle. That is, 

      
  2

 
,        (4.16) 

and          .        (4.17) 

Dividing Eq. (4.16) by (4.17), 

     
 2

  
 or        (

 2

  
)    (4.18) 

Thus, for less bending of cyclist (i.e., for θ to be small), the velocity v should be smaller and radius r 
should be larger. 
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Figure 4.19: Banked road. 

 

For a banked road (Fig. 4.19), let h  be the elevation of the outer edge of the road above the inner 

edge and l  be the width of the road then, 

l

h
sin .        (4.19) 

For small values of  ,          . Therefore, from Eqs. (4.18) and (4.19) 

     
 

 
 

 2

  
.        (4.20) 

 

Obviously, a road or track can be banked correctly only for a particular speed of the vehicle. 
Therefore, the driver must drive with a particular speed at the circular turn. If the speed is higher 
than the desired value, the vehicle tends to slip outward at the turn but then the frictional force acts 
inwards and provides the additional centripetal force. Similarly, if the speed of the vehicle is lower 
than the desired speed it tends to slip inward at the turn but now the frictional force acts outwards 
and reduces the centripetal force. 

 

Condition for skidding 

 

When the centripetal force is greater than the frictional force, skidding occurs. If µ is the coefficient 
of friction between the road and tyre, then the limiting static friction (frictional force) is           
where normal reaction     . Thus, 

            . 

Thus, for skidding, the centripetal force must be greater than the frictional force, i.e., 

    
  2

 
         .  

or   
 2

  
       .       (4.21) 

But,             , and hence 

           .      (4.22) 

Equation (4.22) shows that when the tangent of the angle of banking is greater than the coefficient 
of friction, skidding occurs. 
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4.6 Summary 

Forces/Interactions 

A force is commonly imagined as a push or a pull on some object. When you push or pull an object 
away or towards you, you exert a force on it. Hence, the word force refers, in general, to an 
interaction between two objects. Forces exist only as a result of an interaction. The effect of forces 
are (a) to accelerate or stop an object, (b) to change the direction of a moving object, and (c) to 
change the shape of an object. 

Fundamental Forces 

Force can be classified as either contact forces or field forces. Contact forces are forces that involve 
physical contact between two objects, while field forces are forces that do not involve physical 
contact between two objects.  

 

There are four known fundamental forces of nature. These are: 

(1) the strong nuclear force between subatomic particles; 

(2) the electromagnetic forces between electric charges; 

(3) the weak nuclear forces, which arise in certain radioactive decay processes; and  

(4) the gravitational force between objects. 

 

All the fundamental forces are field forces. Forces such as friction or the force of a bat hitting a ball 
are called contact forces. However, on a more fundamental level, contact forces have an 
electromagnetic nature. 

Newton's laws of motion 

Newton's first law states that an object moves at constant velocity unless acted on by a force. 

 

The tendency for an object to maintain its original state of motion is called inertia. Mass is the 
physical quantity that measures the resistance of an object to changes in its velocity. 

 

Newton's second law states that the acceleration of an object is directly proportional to the net 
force acting on it and inversely proportional to its mass. The net force acting on an object equals the 
product of its mass m  and acceleration,  ⃗: 

    ∑  ⃗    ⃗. 

An object in equilibrium has no net external force acting on it, and the second law, in component 
form, implies that ∑     and ∑     for such an object. This condition is often known as the 

first condition of equilibrium.  

 

The weight,  ⃗ , of an object of mass m is the magnitude of the force of gravity exerted on that object 

and is given by 
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         , 

where        is the acceleration of gravity. 

 

Newton’s third law states that if two objects interact, the force  ⃗   exerted by object 1 on object 2 is 

equal in magnitude and opposite in direction to the force  ⃗   exerted by object 2 on object 1: 

     ⃗     ⃗  . 

Any one of the forces is called the "action" while the other is the "reaction". 

Friction 

Friction is the force that opposes the motion of an object in contact with a surface and it acts parallel 
to the surface the object is in contact with. The magnitude of the frictional force depends on (i) the 
type of the surface (its roughness) and (ii) the magnitude of the normal force. The normal force is 
the force exerted by a surface on an object in contact with it. 

 

We may identify two types of frictions: kinetic and static frictions. 

 

The magnitude of the kinetic friction force    acting on an object moving on a surface is given by 

         ,  

where    is the coefficient of kinetic friction and n  is the magnitude of the normal force. 

 

The magnitude of the static friction force    acting on an object at rest satisfies the inequality 

                  , 

where   is the normal force and    is the coefficient of the maximum static friction force between 
the object and the surface. Note that only the maximum static friction force,       , involves the use 
the static friction coefficient,    . 

Centripetal force 

Centripetal force    is any force causing uniform circular motion. It is a "center-seeking" force that 
always points toward the center of rotation. For an object of mass   moving with constant speed of 
  on a flat circular track of radius  , the magnitude of centripetal force is given by 

    

        
 2

 
. 
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4.7 Conceptual Questions 

1. State Newton's laws of motion. 

2. Which of the following statements are true?  

(a) An object can move even when no force acts on it.  

(b) If an object isn't moving, no external forces act on it.  

(c) If a single force acts on an object, the object accelerates.  

(d) If an object accelerates, at least one force is acting on it.  

(e) If an object isn't accelerating, no external force is acting on it.  

(f) If the net force acting on an object is in the positive x-direction, the object moves 
only in the positive x-direction. 

3. (a) If gold were sold by weight, would you rather buy it in Addis Ababa or in Asseb?  

(b) If it were sold by mass, in which of the two locations would you prefer to buy it? Why? 

4. If you push on a heavy box that is at rest, you must exert some force to start its motion. 
Once the box is sliding, why does a smaller force maintain its motion? 

5. A ball is held in a person's hand.  

(a) Identify all the external forces acting on the ball and the reaction to each.  

(b) If the ball is dropped, what force is exerted on it while it is falling? Identify the 
reaction force in this case. (Neglect air resistance.) 

6. If only one force acts on an object, can it be in equilibrium? Explain. 

7. Identify the action-reaction pairs in the following situations:  

(a) a man takes a step,  

(b) a snowball hits a girl in the back,  

(c) a baseball player catches a ball, and 

(d) a gust of wind strikes a window. 

8. Objects moving along a circular path have a centripetal acceleration provided by a net force 
directed towards the center. Identify the force(s) providing the centripetal acceleration in 
each of these cases:  

(a) a planet in circular orbit around its sun;  

(b) a car going around an unbanked, circular turn;  

(c) a rock tied to a string and swung in a vertical circle, as it passes through its highest 
point;   

(d) a dry sock in a clothes dryer as it spins in a horizontal circle. 

9. A car of mass   follows a truck of mass    around a circular turn. Both vehicles move at 
speed  .  

(a) What is the ratio of the truck's net centripetal force to the car's net centripetal 
force?  
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(b) At what new speed        will the net centripetal force acting on the truck equal the 
net centripetal force acting on the car still moving at the original speed  ? 

10. Is it possible for a car to move in a circular path in such a way that it has a tangential 
acceleration but no centripetal acceleration? 

 

4.8 Problems 

1. Determine the acceleration of a mass of 24 kg when a force of magnitude 6 N acts on it. 
What is the acceleration if the force were doubled and the mass was halved? 

2. A mass of 8 kg is accelerating at 5 m/s2. 

(a) Determine the resultant force that is causing the acceleration. 

(b) What acceleration would be produced if we doubled the force and reduced the mass 
by half? 

3. Find the magnitude of the two forces such that it they are at right angles, their resultant is 
10 N. But if they act at 600, their resultant is 13 N. 

4. A block on an inclined plane experiences a force due to gravity of 300 N straight down. If the 
slope is inclined at 600 to the horizontal, what is the component of the force due to gravity 
perpendicular and parallel to the slope? At what angle would the perpendicular and parallel 
components of the force due to gravity be equal? 

5. The following forces act at a point: 

(a) 20 N inclined at 300 towards North of East 

(b) 25 N towards North 

(c) 30 N inclined at 450 towards North of West 

(d) 35 N inclined at 400 towards South of West. 

Find the magnitude and direction of the resultant force. 

6. A force of 200 N, acting at 600 to the horizontal, accelerates a block of mass 50 kg along a 
horizontal plane as shown in the Figure. 

 

(a) Calculate the component of the 200 N force that accelerates the block horizontally. 

(b) If the acceleration of the block is 1.5 m/s2, calculate the magnitude of the frictional 
force on the block. 

(c) Calculate the vertical force exerted by the block on the plane. 
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7. (a) What is the resultant force exerted by the two cables supporting the traffic light shown 
below in the Figure? (b) What is the weight of the light? 

 

8. An object of weight W is supported by two cables attached to the ceiling and wall as shown. 
The tensions in the two cables are T1 and T2, respectively. If tension T1 = 1200 N, determine 
the tension T2 and the weight W of the object. 

 

9. Two crates of masses 30 kg and 50 kg are connected with a thick rope as shown in the 
diagram. If they are dragged up an incline such that the ratio of the parallel and 
perpendicular components of the gravitational force on each block are 3:5. The boxes move 
with an acceleration of 7 m/s2 up the slope. The ratio of the frictional forces on the two 
crates is the same as the ratio of their masses. The magnitude of the force due to gravity on 
the 30 kg crate is 294 N and on the 50 kg crate is 490 N. Calculate: 

 

(a) the magnitude and direction of the total frictional force present. 

(b) the magnitude of the tension in the rope at T. 

10. A car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the 
wheels. The car skids for 5.60 s in the positive x-direction before coming to rest.  

(a) What is the car's acceleration?  

(b) What magnitude force acted on the car during this time?  

(c) How far did the car travel? 
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11. A student of mass 60.0 kg, starting at rest, slides down a slide 20.0 m long, tilted at an angle 
of 30.00 with respect to the horizontal. If the coefficient of kinetic friction between the 
student and the slide is 0.120, find  

(a) the force of kinetic friction,  

(b) the acceleration, and  

(c) the speed she is traveling when she reaches the bottom of the slide. 

12. A man exerts a horizontal force of 125 N on a crate with a mass of 30.0 kg. 

(a) If the crate doesn't move, what is the magnitude of the static friction force?  

(b) What is the minimum possible value of the coefficient of static friction between the 
crate and the floor? 

13. A 75-kg man standing on a scale in an elevator notes that as the elevator rises, the scale 
reads 825 N. What is the acceleration of the elevator? 

14. An elevator is required to lift a body of mass 65 kg. Find the acceleration of the elevator, 
which could cause a reaction of 800 N on the floor. 

15. A toy rocket experiences a force due to gravity of magnitude 4.5 N is supported vertically by 
placing it in a bottle. The rocket is then ignited. Calculate the force that is required to 
accelerate the rocket vertically upwards at 8 m/s2. 

16. At what angle must a railway track with a bend of radius 880 m be banked for the safe 
running of a train at a velocity of 44 m/s? 

17. A 55.0 kg ice skater is moving at 4.0 m/s when she grabs the loose end of a rope, the 
opposite end of which is tied to a pole. She then moves in a circle of radius 0.80 m around 
the pole.  

(a) Determine the force exerted by the horizontal rope on her arms.  

(b) Compare this force with her weight. 

18. A 40.0 kg child swings in a swing supported by two chains, each 3.0 m long. The tension in 
each chain at the lowest point is 350 N. Find  

(a) the child's speed at the lowest point and  

(b) the force exerted by the seat on the child at the lowest point. (Ignore the mass of 
the seat.) 

19. A certain light truck can go around a flat curve having a radius of 150 m with a maximum 
speed of 32.0 m/s. With what maximum speed can it go around a curve having a radius of 
75.0 m? 

20. A roller-coaster car is moving around a circular loop of radius R; as shown in the Figure.  
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21. Figure: A roller coaster traveling around a circular track. 

(a) What speed must the car have at the top of the loop so that it will just make it over 
the top without any assistance from the track?  

(b) What speed will the car subsequently have at the bottom of the loop? 

(c) What will be the normal force on a passenger at the bottom of the loop if the loop 
has a radius of 10.0 m? 
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5 Gravitation and Kepler’s Laws of Motion 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Apply Newton’s law of gravitation to relate the gravitational force between two particles to 
their masses and their separation. 

 Identify that a uniform spherical shell of matter attracts a particle that is outside the shell as 
if all the shell’s mass were concentrated at its center. 

 Draw a free-body diagram to indicate the gravitational force on a particle due to other 
particles or a uniform spherical distribution of matter 

 Identify that a uniform shell of matter exerts no net gravitational force on a particle located 
inside it. 

 Calculate the gravitational potential energy of a system of particles (or uniform sphere that 
can be treated as particles). 

 State Kepler’s three laws 

 

Introduction 

In this chapter, we study Newton’s law of universal gravitation. We emphasize on the description of 
planetary motion because astronomical data provide an important test of this law’s validity. We 
then show that the laws of planetary motion developed by Johannes Kepler follow from the law of 
universal gravitation and the principle of conservation of angular momentum. We conclude the 
chapter by deriving a general expression for the gravitational potential energy of a system and 
examining the energetics of planetary and satellite motion. 

5.1 Newton’s Law of Gravitation 

Learning outcome 

After completing this section, students are expected to: 

 Calculate the attractive force between two point masses 

 Explain the relation between the force between two point masses and the separation 
between the masses  

 

Prior to 1686, a great deal of data had been collected on the motions of the Moon and planets, but 
no one had a clear understanding of the forces affecting them. In that year, Isaac Newton provided 
the key that unlocked the secrets of the heavens. He knew from the first law that a net force had to 
be acting on the Moon. If it were not, the Moon would move in a straight-line path rather than in its 
almost circular orbit around Earth. Newton reasoned that it was the same kind of force that 
attracted objects—such as apples—close to the surface of the Earth. He called it the force of gravity.  
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In 1687 Newton published his work on the law of universal gravitation, which is stated as: 

 

Gravitational force,  ⃗⃗⃗ , of attraction between two particles, with masses m1 

and m2 and separated by a distance r, is directly proportional to the product 

of their masses and inversely proportional to the square of their separation.  

Moreover, the gravitational force is directed along the line joining the 

masses.  That is; 

 ⃗⃗⃗  
     

   ̂         (5-1) 

where   6 67 ×              is a constant of proportionality called the universal 
gravitational constant. The gravitational force is always attractive. 

 

Figure 5-1: The gravitational force between two particles is attractive and acts along the line joining 
the particles. 

 

The force law given by Eqn. (5.1) is an example of an inverse - square law, in that it varies as one 
over the square of the distance between particles. From Newton’s third law, we know that the force 

exerted by m1 on m2, designated  ⃗   in Fig 5.1, is equal in magnitude but opposite in direction to the 

force  ⃗   exerted by m2 on m1, forming an action–reaction pair. That is, 

 

 ⃗⃗⃗     ⃗⃗⃗   

 

Another important fact is that the gravitational force exerted by a uniform sphere on a particle 
outside the sphere is the same as the force exerted if the entire mass of the sphere were 
concentrated at its center. This is called Gauss’ law.  

 

Examples 

1. Calculate the net gravitational force that mass kgm 202  and kgm 103  exerts on 

mass kgm 201   for the case shown in Fig. 5.2. 
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Solution:  

The net gravitational force  ⃗⃗⃗   on m1 is the vector sum of the forces due to   m2 and m3.  The 

magnitude of force 
12F


on particle 1 by particle 2 is 

 

 ⃗   
     

     
 ̂  

6 67 ×             ×       ×       

4 ×    5  
   67 ×        ̂

 

Similarly, the magnitude of the 13F


on particle 1 from particle 3 is  

 ⃗   
     

    
 ̂  

6 67 ×             ×       ×       

   5  
 5 34 ×        ̂

 

The two forces are at right angle to each other. That is the force  ⃗   directed along positive x-axis 

and  ⃗  is directed along the positive-y-axis. The magnitude of resultant or the net force that the 
two masses exert on particle 1 is  

 

   √| ⃗  |
 
 | ⃗  |

 
 √   67     5 34    5 97 ×       

 

The direction of the force is determined by calculating the angle  that the resultant force makes 

with the positive x-axis and is given by        (
    ×    

   7×    )  63 4°. 

 

2. The Earth-Sun distance is about   5 ×       = (one astronomical unit).  The mass of the 
Earth is 6  ×       and the mass of the Sun is    ×       .  What is the magnitude of 
the force the Earth exerts on the Sun?  

 

Solution:  

 ⃗  
     

  
 

6 67 ×             × 6  ×       ×    ×       

   5 ×        
 3 56 ×       
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Figure 5-2: arrangement of three masses 

 

Exercises 

1. Comparing the results obtained in examples 1 and 2 above, determine in which case the 
gravitational force is significant?  

2. Two objects attract each other with a gravitational force of magnitude    ×       when 
separated by 20.0 cm. If the total mass of the objects is 5.00 kg, what is the mass of each?  

3. (a) Find the magnitude of the gravitational force between a planet with mass 7 5 ×        
and its moon, with mass  7 ×       , if the average distance between their centers is 
2.80 3 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the 
acceleration of the planet towards the moon? 

4. A square edge length 20. 0 cm is formed by four spheres of masses    5    ,    
3              and    5     (see Fig. 5.3). In unit-vector notation, what is the net 
gravitational force from them on a central sphere with mass      5   ? 

 

Figure 5-3: Gravitational force on the central sphere by the corner spheres. 

 

5.1.1 Free-Fall Acceleration and the Gravitational force  

Learning outcome 

After completing this section, students are expected to: 

 Distinguish between the free-fall acceleration and the gravitational acceleration 
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 Calculate the gravitational acceleration at different heights above the surface of the Earth. 

 

The gravitational acceleration   of a particle (of mass m) near the surface of Earth is due solely to 

the gravitational force acting on it. We recall that gravitational force,  ⃗⃗⃗ ,  on a particle of mass m 

placed on(near) the surface of the earth is equal to the weight of the particle. Moreover, the net 
force on the particle is gravitational attraction exerted by earth, which is given by Eq. (5.1). Thus, by 
Newton’s second law, 

 

      
    

  
 

 

  
   

  
         (5-2) 

where M is mass of the Earth and    is its radius. Equation 5.2 relates the free-fall acceleration   to 
physical parameters of the Earth – its mass and radius – and explains the origin of the value of 9.80 
m/s2 that we have used in earlier chapters. Now consider an object of mass   located a distance   
above the Earth’s surface or a distance   from the Earth’s center, where       . The magnitude 
of the gravitational force acting on this object is 

 

   
    

  
 

    

       
 

 

The magnitude of the gravitational force acting on the object at this position is also       , where 

   is the value of the free-fall acceleration at the altitude h. Substituting this expression for    into 

the last equation shows that    is given by 

 

   
   

       
        (5-3) 

 

The variation of free-fall acceleration g with altitude above the Earth is shown in Table 5-1. 

 

Table 5-1: Free-Fall acceleration g at various altitudes 

Altitude above the surface of the Earth (km)         
1000 7.33 

2000 5.68 

3000 4.53 

4000 3.70 

5000 3.08 

6000 2.60 

7000 2.20 

8000 1.93 
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9000 1.69 

10000 1.49 

50000 0.13 
 

Examples:  

1. The International Space Station operates at an altitude of 350 km. Plans for the 
final construction show that material of weight 4   ×     , measured at the 
Earth’s surface, will have been lifted off the surface by various spacecraft. What is 
the weight of the space station when in orbit? 

 

Solution:  

First, we calculate the mass of material from its weight when it was at the ground.  

           ⇒   
      

 
 

    ×     

        
     ×       

Next determine the gravitational acceleration g at the height of 350 km using equation 
(5.3).  

  
   

       
 

6 67 ×             × 6  ×       

 6 4 ×      3 5 ×       
 8 8      

 

Hence,             4 3 ×      × 8 8      3 8 ×      

 

2. At what altitude above the Earth’s surface does the gravitational acceleration 
reduced by half? 

  

Solution:  

   
 

 
 

   

       
 

⇒           
 

 
    

 

9 8     
× 6 67 ×             × 6  ×        

 

    ×       
  8  8 ×        

 

Substituting the value of ER and solving the quadratic equation, we obtain  

 

     ±
√4  

  4 × 8  8 ×        4  
 

 
   64 ×      
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   Exercises 

1. The mass of Jupiter is   9 ×    7  and its radius is 7  ×   7   Calculate the gravitational 
acceleration at the surface of Jupiter.  

2. When a falling meteoroid is at a distance above the Earth’s surface of 3.00 times the Earth’s 
radius, what is its acceleration due to the Earth’s gravitation? 

3. (a) What will an object weigh on the Moon’s surface if it weighs 100 N on Earth’s surface? 
(b) How many Earth radii must this same object be from the center of Earth if it is to weigh 
the same as it does on the Moon? 

4. An astronaut standing on the surface of Ceres, the largest asteroid, drops a rock from a 
height of 10.0 m. It takes 8.06 s to hit the ground. (a) Calculate the acceleration of gravity on 
Ceres. (b) Find the mass of Ceres, given that the radius of Ceres is    5  ×      . (c) 
Calculate the gravitational acceleration 50.0 km from the surface of Ceres. 

 

5.1.2 Gravitational Potential Energy  

Learning Outcome 

After completing this Chapter, students are expected to: 

 Determine the gravitational potential energy at height h above the surface of the Earth  

 Discuss the effect of distance between two masses on gravitational potential energy they 
possess 

 

The common concept of gravitational potential energy associated with an object of mass m near the 
surface of the Earth could be calculated from the relation       , where h is the height of the 
object above or below some reference level. This equation, however, is valid only when the object is 
near Earth’s surface. For objects high above Earth’s surface, such as a satellite, an alternative 
relation must be used because g varies with distance from the surface, as shown in Table 5.1 

The gravitational potential energy associated with an object of mass m at a distance r from the 
center of Earth is 

 

    
    

 
        (5-4) 
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Figure 5-4: As a mass m moves radially away from the Earth, the potential energy of the Earth-mass 
system, which is               at Earth’s surface, increases toward a limit of zero as the mass 
m travels away from Earth, as shown in the graph. 

 
 

Example  

How much work is done by the gravitational field in moving a mass of 20.0 kg, from infinity 
to a point A, 5.0 m from a mass of 1000 kg?  

 

Solution 

The work done in moving an object from infinity to a given point is just the negative of the 
potential energy of the object when it was at infinity. Hence  

 

      
     

 
 

6 67 ×             ×       ×         

5   
 

 

    7 ×    7  

 

 

Exercises  

1. What must the separation be between a 5.2 kg particle and a 2.4 kg particle for their 
gravitational attraction to have a magnitude of   3 ×       ? What is the gravitational 
potential energy of the two-particle system? If you triple the separation between the 
particles, how much work is done (b) by the gravitational force between the particles and (c) 
by you? 

2. Figure 5.5 gives the potential energy function PE(r) of a projectile, plotted outward from the 
surface of a planet of radius  . What least kinetic energy is required of a projectile launched 
at the surface if the projectile is to “escape” the planet? 

 



General Physics Module Phys 1011 AAU 

  

Gravitation and Kepler’s Laws of Motion 146 

 

 

 

 

 

Figure 5-5: Relates to Exercise 2 

 

5.1.3 Escape Speed  

Learning outcome 

 After completing this Chapter, students are expected to: 

 Define escape speed 

 Calculate the escape speed of a given satellite 

 Analyse the correlation between escape speed and the mass of the projected object 

 

If an object is projected upward from Earth’s surface with a large enough speed, it can soar off into 
space and never return. This speed is called Earth’s escape speed. (It is also commonly called the 
escape velocity, but in fact is more properly a speed.) The escape speed form the Earth’s surface can 
be found by applying conservation of energy. Suppose an object of mass m is projected vertically 
upward from Earth’s surface with an initial speed   . The initial mechanical energy (kinetic plus 
potential energy) of the object–Earth system is given by 

 

        
 

 
   

  
    

  
      (5-5) 

 

In this expression the air resistance was neglected and the initial speed is just large enough to allow 

the object to reach infinity with a speed of zero. This initial the speed ( iv  ) of the object is the 

escape speed escv of the object.  When the object is at an infinite distance from Earth, its kinetic 

energy is zero because 0fv , and the gravitational potential energy is also zero because 1/r goes 

to zero as r goes to infinity. Hence the total mechanical energy is zero, and the law of conservation 
of energy gives 

   
   

   
   

   
   

P
E  

(J
) 
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     √
    

  
       (5-6) 

 

Table 5-2: Escape speed for the planets and the moon 
 

Planet  
escv (km/s) 

Mercury 4.3 

Venus 10.3 

Earth 11.2 

Moon 2.3 

Mars 5 

Jupiter 60 

Saturn 36 

Uranus  22 

Neptune  24 

Pluto 1.1 
 
 

Examples  

If the spacecraft leaves the cannon (on the surface of the Earth) at escape speed, at what speed is it 

moving when km5102  from the center of Earth? Neglect any friction effects. 

 

Solution 

Here the escape seed is that of the Earth’s escape speed, 11.2 km/s, and applying the law of 
conservation of energy  

 

 

 
     

  
    

  
 

 

 
   

  
    

 
 

 

where    ×      . 

 

    
  

     

  
   

  
     

 
 



General Physics Module Phys 1011 AAU 

  

Gravitation and Kepler’s Laws of Motion 148 

 

 

  
      

  
    

  
 

    

 
 

 

        
  

    

  
 

    

 
 

         ×           × 6 67 ×      × 6  ×      
 

 ×     
 

 

6 4 ×     
  

 
      ×        

 

Exercise  

1. (a) What is the escape speed on a spherical asteroid whose radius is 500 km and whose 
gravitational acceleration at the surface is 3.0 m/s2? (b) How far from the surface will a 
particle go if it leaves the asteroid’s surface with a radial speed of 1000 m/s? (c) With what 
speed will an object hit the asteroid if it is dropped from 1000 km above the surface? 

2. What multiple of the energy needed to escape from Earth gives the energy needed to 
escape from (a) the Moon and (b) Jupiter? 

3. A projectile is fired straight upward from the Earth’s surface at the South Pole with an initial 
speed equal to one third the escape speed. (a) Ignoring air resistance, determine how far 
from the center of the Earth the projectile travels before stopping momentarily. (b) What is 
the altitude of the projectile at this instant? 

 

5.2 Kepler’s Law and the Motion of Planets  

Learning outcome 

After completing this Chapter, students are expected to: 

 Distinguish between the three Kepler’s law of planetary motion 

 apply Kepler’s laws to an orbiting natural or artificial satellite. 

 

There are three planetary laws proposed by German astronomer Johannes Kepler. These laws are: 

 

1. The law of orbits 

All planets move in elliptical orbits with the Sun at one of the focal points.  

 

2. The law of area 

A line drawn from the Sun to any planet sweeps out equal areas in equal time intervals. 
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3. The law of periods 

The square of the orbital period of any planet is proportional to the cube of the average distance 
from the planet to the Sun. 

 

Newton later demonstrated that these laws are consequences of the gravitational force that exists 
between any two objects. Newton’s law of universal gravitation, together with his laws of motion, 
provides the basis for a full mathematical description of the motions of planets and satellites. 

 

5.2.1 Kepler’s First Law 

The first law arises as a natural consequence of the inverse square nature of Newton’s law of 
gravitation. Any object bound to another by a force that varies as      will move in an elliptical 
orbit. As shown in Figure 5.6a, an ellipse is a curve drawn so that the sum of the distances from any 
point on the curve to two internal points called focal points or foci (singular, focus) is always the 
same. The semi-major axis a is half the length of the line that goes across the ellipse and contains 
both foci. For the Sun–planet configuration (Fig. 5.6b), the Sun is at one focus and the other focus is 
empty. Because the orbit is an ellipse, the distance from the Sun to the planet continuously changes. 

 

 

Figure 5-6: (a) The sum p + q is the same for every point on the ellipse.  (b) In the Solar System, the 
Sun is at one focus of the elliptical orbit of each planet and the other focus is empty. 

 

 

5.2.2 Kepler’s second Law  

Kepler’s second law states that a line drawn from the Sun to any planet sweeps out equal areas in 
equal time intervals. Consider a planet in an elliptical orbit about the Sun, as in Figure 5.7. In a given 

period t , the planet moves from point Ⓐ to point Ⓑ. The planet moves more slowly on that side of 
the orbit because it’s farther away from the sun. On the opposite side of its orbit, the planet moves 

from point Ⓒ to point Ⓓ in the same amount of time, t , moving faster because it’s closer to the 
sun. Kepler’s second law says that any two wedges formed as in Figure 5.7 will always have the same 
area.  
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Figure 5-7: The two areas swept out by the planet in its elliptical orbit about the Sun are equal if the 

time interval between point Ⓐ is and Ⓑ is equal to the time interval between pointsⒸ and Ⓓ. 

 

5.2.3 Kepler’s third Law:  

The derivation of Kepler’s third law is simple enough to carry out for the special case of a circular 
orbit. Consider a planet of mass   moving around the Sun, which has a mass of   , in a circular 
orbit. Because the orbit is circular, the planet moves at a constant speed  . Newton’s second law, his 
law of gravitation, and centripetal acceleration then give the following equation: 

 

     
    

 
 

     

  
 

 

But   
   

 
, where T is the period of revolution and r is the radius of the orbit.  

 

   (
4  

   
)   

 

      
         (5-7) 

 

This leads to  

 

   
4  

   
   97 ×            

 

This equation is also valid for elliptical orbits if we replace r with the length a of the semimajor axis 

 

   (
   

   
)      

       (5-8) 
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Table 5.3: Use ful planetary data 

 

 

Comets and asteroids usually have elliptical orbits. For these orbits, the radius r must be replaced 
with a, the semi-major axis – half the longest distance across the elliptical orbit. 

The last column in Table 5.3 confirms that       is very nearly constant.  

 

Examples  

1. For geostationary satellite, calculate (a) The height above the Earth’s surface and (b) The 
speed in orbit 

(radius of Earth, mRE

6104.6  ; mass of the earth = 6.0 x 1024 kg)  

Solution 

(a) The period of the satellite is 24 hours = 6.64 x 104 s.  

 

Using        
  2

   
, we get 

  (
6 67 ×            × 6 ×     ×  8 64 ×       

4  )

 
 

 4  3 ×   7  

 

(b)   
   

 
 

 ×    ×    

    ×    
         

 

 

2. The radius of the Moon’s orbit 3.84 x 108 m, and its period is 27.4 days. Use Kepler’s law to 
calculate the period of the orbit of a satellite orbiting the Earth just above the Earth’s (radius 
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of Earth’s radius is 6.4 x 106 m).  

 

Solution 

First convert 27.4 days to second:  7 4 ×  4 × 6 × 6    36736  . Then use the relation  

 

  
 

  
  

  
 

  
  

 

    
  

   
 

  
   

  36736    ×  6 4 ×       

 3 84 ×       
   4     

 

Exercises 

1. (a) What linear speed must an Earth satellite have to be in a circular 
orbit at an altitude of 160 km above Earth’s surface? (b)What is the 
period of revolution? 

2. Satellite is put in a circular orbit about Earth with a radius equal to one-half the radius of the 
Moon’s orbit. What is its period of revolution in lunar months? (A lunar month is the period 
of revolution of the Moon.) 

3. The Martian satellite Phobos travels in an approximately circular orbit of radius 9.4 x 106 m 
with a period of 7 h 39 min. Calculate the mass of Mars from this information 

 

5.3 Summary 

Newton’s law of universal gravitation states that the gravitational force of attraction between any 
two particles of masses m1 and m2 separated by a distance r has the magnitude  

 ⃗  
     

  
 ̂  

where   6 67 ×              is the universal gravitational constant. This equation enables us 
to calculate the force of attraction between masses under many circumstances. 

An object at a distance h above the Earth’s surface experiences a gravitational force of magnitude 
  , where   is the free-fall acceleration at that elevation:  

   
    

  
 

    

       
 

In this expression, ME  is the mass of the Earth and RE is its radius. Therefore, the weight of an object 
decreases as the object moves away from the Earth’s surface. 

 

Kepler’s laws of planetary motion state: 
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1. All planets move in elliptical orbits with the Sun at one focus. 

2. The radius vector drawn from the Sun to a planet sweeps out equal areas in equal time 
intervals. 

3. The square of the orbital period of any planet is proportional to the cube of the sem-imajor 
axis of the elliptical orbit. 

Kepler’s third law can be expressed as 

   (
4  

   
)      

  

where MS is the mass of the Sun and a is the semi-major axis. For a circular orbit, a can be replaced 
in Equation 5.8 by the radius r. Most planets have nearly circular orbits around the Sun. 

 

The gravitational potential energy associated with a system of two particles separated by a distance 
r is 

    
    

 
 

where PE  is taken to be zero as r  tends to infinity.   

If an isolated system consists of an object of mass m moving with a speed v in the vicinity of a 
massive object of mass M, the total energy E of the system is the sum of the kinetic and potential 
energies: 

  
 

 
    

   

 
 

 

The total energy of the system is a constant of the motion. If the object moves in an elliptical orbit of 
semi-major axis a around the massive object and M>>m, the total energy of the system is 

   
   

  
 

For a circular orbit, this same equation applies with     

 

The escape speed for an object projected from the surface of a planet of mass M and radius R is 

      
   

 
 

5.4 Conceptual Questions 

1. A parachute is falling toward the ground. Which of the following statements are false? (a) 
The force that the parachute exerts on Earth is equal in magnitude to the force that Earth 
exerts on the parachute. (b) The parachute undergoes the same acceleration as Earth. (c) 
The magnitude of the force the Earth exerts on the parachute is greater than the magnitude 
of the force the parachute exerts on the Earth. 

2. Planet   is located at a distance  from the sun and planet   is located at a distance    from 
the sun. Which planet exerts a bigger force on the sun? by what factor the force is bigger?  
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3. As the asteroid approaches Earth, does the gravitational potential energy associated with 
the asteroid Earth system (a) increase, (b) decrease, (c) remain the same? 

4. A satellite in low-Earth orbit is not truly traveling through a vacuum. Rather, it moves 
through very thin air. Does the resulting air friction cause the satellite to slow down? 

5. The escape speed is independent of the direction in which the object leaves Earth’s surface. 
Why is this?  

6. The satellites of Jupiter follow Kepler’s third law: The Square of their periods divided by the 
radius of their orbits cubed is cubed. Is this the same constant as the planets moving around 
the sun? 

7. If Earth were a perfect sphere, would you weigh more or less at the equator than at the 
poles?  

8. How do satellites set into circular orbits? 

9. If there were no gravitational attraction forces between the sun and the planets what may 
happen? 

10. Why we do not feel the attraction forces between us?  

 

5.5 Problems 

1. (a) Find the magnitude of the gravitational force between a planet with mass 7.50 x 1024 kg 
and its moon, with mass 2.70 x 1022 kg, if the average distance between their centers is 2.80 
x 108 m. (b) What is the acceleration of the moon towards the planet? (c) What is the 
acceleration of the planet towards the moon? 

2. An artificial satellite circling the Earth completes each orbit in 110 minutes. (a) Find the 
altitude of the satellite. (b) What is the value of g at the location of this satellite? 

3. Two neutron stars are separated by a distance    ×     m. They each have a mass of 

   ×     kg and a radius of    ×    m. They are initially at rest with respect to each 
other. As measured from that rest frame, how fast are they moving when (a) their 
separation has decreased to one-half its initial value and (b) they are about to collide? 

4. At what altitude above Earth’s surface would the gravitational acceleration be 4.9 m/s2? 

5.   , a satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of 

4   ×     km. From these data, determine the mass of Jupiter. 

6. The Sun, which is 2.2 x 1020 m from the center of the Milky Way galaxy, revolves around that 
center once every 2.5 x 108 years. Assuming each star in the Galaxy has a mass equal to the 
Sun’s mass of 2.0 x 1030 kg, the stars are distributed uniformly in a sphere about the galactic 
center, and the Sun is at the edge of that sphere, estimate the number of stars in the Galaxy. 

7. A 20 kg satellite has a circular orbit with a period of 2.4 h and a radius of 8.0 x 106 m around 
a planet of unknown mass. If the magnitude of the gravitational acceleration on the surface 
of the planet is 8.0 m/s2, what is the radius of the planet? 
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6 Work and Energy 

 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Understand the concepts of work, energy, and power.  

 Express these quantities in mathematical formula. 

 Solve problems based on these concepts. 

 

Introduction 

This chapter introduces: meanings of work done, kinetic and potential energies, and how each of 
these are calculated using a given quantities.  Problems are considered from different corners of real 
life within the context of simplified models.  

 

6.1  The Concept of Work 

Work and energy are important concepts in physics as well as in our everyday lives. In physics, a 
force does work if its point of application moves through a distance and there is a component of the 
force in the direction of the velocity of the force's point of application. For a constant force in one 
dimension, the work done equals the force component in the direction of the displacement times 
the displacement. (This differs somewhat from the everyday use of the word work. When you study 
hard for an exam, the only work you do according to the use of the word in physics, is in pushing 
your pencil on the paper, or turning the pages of your book.) 

 

Energy is closely associated with work. When work is done by one system on another, energy is 
transferred between the two systems. For example, when you do work pushing a swing, chemical 
energy of your body is transferred to the swing and appears as kinetic energy of motion or as 
gravitational potential energy of the earth-swing system. There are many forms of energy. Kinetic 
energy is associated with the motion of an object. Potential energy is associated with the 
configuration of a system, such as the separation distance between two objects that attract each 
other. Thermal energy is associated with the random motion of the molecules within a system and is 
closely connected with the temperature of the system. 

6.1.1 Work done by a constant force 

We consider an object that is displaced along the x axis by    by applying a constant force  ⃗⃗⃗ that 
makes an angle   with the direction of motion, as shown in Fig. 6.1.  
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Fig. 6.1 Work done by a constant force 

 

Then the work done on the object by the constant force (constant in both magnitude and direction) 
is defined as the product of the magnitude of the displacement times the component of the force 
parallel to the displacement. That is, 

 

                                       (6.1) 

 

where       is component of the force in the direction of the displacement, W is work done, and 
   is the magnitude of the displacement. We notice that work done can be positive, negative or zero 
depending on the angle   between the force and the displacement. The work done is positive when 
the force has a component in the same direction as the displacement (     9   . On the other 
hand, when the force has a component opposite to the displacement (9      8    , the work 
done is negative. When the force is perpendicular to the displacement,   9   and the work done 
by the force is zero.  

 

Work is said to be done on an object by a force if (a) the force is not perpendicular to the 
displacement (  9  ); and (b) the force displaces the object. For instant, a person pushing a fixed 
wall is not doing work since there is no displacement. Moreover, a person carrying a quintal of teff 
and moving horizontally is not doing work. In this case the force applied on the quintal is vertically 
upward and the displacement is in the horizontal direction. 

 

6.1.2 Kinetic energy and work-energy theorem 

The total work done on a body by external forces is related to the body's displacement-that is, to 
changes in its position. But the total work is also related to changes in the speed of the body. 
Consider a particle with mass   moving along the x-axis under the action of a constant net force 
with magnitude   directed along the positive x-axis (Fig. 6.2). Suppose the speed changes from    to 
   while the particle undergoes a displacement          from point    to   .  
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Fig. 6. 2 

 

This constant net force on the object is given by Newton’s second law as  

 

             (6.2) 

 

Now since the force is constant, the acceleration will also remain constant and thus can be written 
as 

 

  
 2

2  1
2

  
                (6.3) 

 

Upon combining Eqs. (6.2) and (6.3), the net force is expressible as  

 

   (
  

    
 

  
) 

or 

 

    
 

 
   

  
 

 
   

         (6.4) 

 

The product    is the work done by the net force and the quantity 

 

   
 

 
             (6.5) 

 

is called kinetic energy of a mass   moving with speed  . Thus, 
 

 
   

  is the final kinetic energy of 

the mass and 
 

 
   

  is its initial kinetic energy. We therefore observe that Eq. (6.4) relates the work 

done on an object by a net force to the change in its kinetic energy.  

 

Then work-energy theorem can then be stated as   

 

The work done by a net force on an object is equal to the change in its kinetic energy. 
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                   (6.6) 

 

where     
 

 
   

  is the final kinetic energy of the particle and     
 

 
   

  is its initial kinetic 

energy.  

 

The work–kinetic energy theorem indicates that the speed of an object increases if the net work 
done on it is positive because the final kinetic energy is greater than the initial kinetic energy. The 
speed decreases if the net work is negative because the final kinetic energy is less than the initial 
kinetic energy. On the other hand, no work is done by the net force in moving an object with a 
constant speed. 

 

Example 

A 61 kg skier on level snow coasts 184 m to a stop from a speed of           (a) Use the work–
energy principle to find the coefficient of kinetic friction between the skis and the snow. (b) Suppose 
a 75 kg skier with twice the starting speed coasted the same distance before stopping. Find the 
coefficient of kinetic friction between that skier’s skis and the snow. 

 

Solution: 

(a)   6            84                ,          ,         ? 

According to the work-energy theorem, the change in the kinetic energy of the skis is equal to the 
work done by the net force acting the skis. That is, 

 

                          (1) 

 

The net horizontal force on the skis is the kinetic frictional force, 

 

                     (2) 

 

Consequently, the work done by the net force is equal to the work done by frictional   force. We thus 
have  

 

                             (3) 

                                                                                                                                                                Equating 
Eqs. (1) and (3) and using the given values, we obtain 
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or                                                                                                                                                                                       

   
  

 

   
    39  

 

(b)     75            84       4      ,          ,        ? 

 

Following the same procedure, one can verify that 

 

   
  

 

   
    56  

 

6.1.3 Elastic potential energy 

When a spring is stretched (or compressed) from its equilibrium position, it has ability to do work as 
it returns to the equilibrium position. Thus, the spring may have the potential for doing work 
because of its stretch (or compression). 

 

Energy that is stored in an elastic object when you stretch, compress, twist, or otherwise deform it is 
called elastic potential energy. Consider an object of mass   attached to a spring of spring constant 
 , as shown in Fig.6.3. 

 

For a force that is a linear function of position, such as spring force         ), the work done by 

the force is the average force multiplied by the displacement. Accordingly, the work done by spring 
force when the spring is stretched from    to    is the product of the average spring force and the 

displacement. That is; 

 

     
 

 
 (     )(     )   

 

 
    

    
      (6.7) 

 

The quantity      
 

 
    is elastic potential energy of spring mass system when the spring is 

stretched or compressed by  . We thus notice that       
 

 
   

  is the final elastic potential 

energy and       
 

 
   

  is the initial elastic potential energy. Accordingly, we observe from Eq. 

(6.7) that the work done by spring force when the spring is stretched from       to    is equal to the 

negative of the change in elastic potential energy. That is, 

  

                         .      (6.8) 
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Fig. 6.3: The forces acting on the mass attached to the spring are spring force Fspring and external 
force Fext .  

 

Exercise  

Plot the elastic potential energy,      versus position,   and discuss about the total mechanical 
energy. 

6.1.4 Gravitational potential energy 

In this section we will discuss another form of mechanical energy, called potential energy, 
associated with the position or configuration of object. Thus, the potential energy of a system of 
interacting objects represents the ability of the system to do work because of its position or 
configuration. 

 

To define gravitational potential energy, we consider a physics book of mass   lifted from an initial 
height    to a final height    above the surface of the earth, as indicated in Fig. 6.4. 
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Fig. 6.4: Relating potential energy to work done by a force 

 

The work done by gravitational force as the book is raised from the initial height    to a final height 
   from the ground is given by 

 

   | ⃗ ||  ⃗|   s  ,        (6.9) 

 

where  ⃗      ̂ is the gravitational force on the book and   ⃗          ̂ is the displacement 

and   is the angle between the gravitational force and the displacement. In Figure 6.4,    8 °. It 
then follows that 

 

               .      (6.10) 

 

The quantity        is called gravitational potential energy. Thus          is the final 

gravitational potential energy and          is the initial gravitational potential energy of the 

earth-book system. Accordingly, the work done by gravitational force can be expressed as 

   

    [       ]      .       (6.11) 

 

We observe that work done by gravitational force is equal to the negative of the change in 
gravitational potential energy. When the object moves down, y decreases, the gravitational force 
does positive work, and the potential energy decreases. When the object moves up, the work done 
by the gravitational force is negative, and the potential energy increases. 
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Exercises 

1. A box is dragged horizontally across a floor by a 100 N force acting parallel to the floor. What 
is the work done by the force in moving it through a distance of 8 m?  

2. A box is dragged across a floor by a 100 N force directed 60° above the horizontal. How 
much work does the force do in pulling the object 8 m?  

3. A horizontal force F pulls a 10 kg cartoon across the floor at constant speed. If the coefficient 
of sliding friction between the carton and the floor is 0.30, how much work is done by F in 
moving the carton by 5m?  

 

Examples 

1. A force 𝐹⃗   4𝑖̂  3𝑗̂ 𝑁 acts on an object of mass 𝑚   𝑘𝑔, moving the object by 
dragging it from origin to 𝑥  5  𝑚. Find the work done on the object and the angle 𝜃 
between the force and the displacement. 

 

Solution: 

The displacement is in the positive x-direction: 

  

𝜃  𝑐𝑜𝑠   
𝑊

𝐹𝑑
  𝑐𝑜𝑠   

  

 5
  37   

 Δ𝑟  𝑟  𝑟   5   𝑚 𝑖̂  𝟎   5  𝑚 𝑖 ̂,  Δ𝑥  5𝑚 

  

Only the component of the force in the displacement direction does work. Therefore, 

  

𝑊  𝐹𝑥𝛥𝑥  4𝑁 × 5𝑚    𝐽.   

 

Using 𝑊  𝐹𝑑 𝑐𝑜𝑠 𝜃 

 

2. In the above problem, the contact surface on which the object is dragged is rough with 
coefficient of friction μk     , What is the value of the total work done?  

 

Solution 

The friction force acts in opposite direction to the displacement and is given as 
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6.2 Conservation of Energy  

Learning Outcomes 

After completing this section, students are expected to 

 Describe the law of conservation of mechanical energy 

 Apply the law of conservation of mechanical energy in solving problems 

 Identify whether mechanical energy of a system is conserved or not 

 

In general terms, energy is neither created nor destroyed. This means there is conservation of 
energy within a universe. However, since energy exists in various forms and it can transform from 
one form to another, conservation of energy may also be regarded to mean conservation of 
magnitude of a given form energy.   

The law of conservation of mechanical energy states that in the absence of dissipative force such as 
friction, mechanical energy of a system remains constant or conserved.  

 

That is;  

      

 

Or         

 

                     (6.12) 

 

On the other hand, in the presence of friction, the change in mechanical energy is equal to the work 
done by friction. That is; 

 

      ,        (6.13) 

 

where                  is work done by friction, in which    is coefficient of kinetic friction 

and    is normal force.   

 

When a particle is under an only gravitational force field, the potential energy is all potential,  

     and when the particle is under the action of an only elastic restoring force field,       .  

For a particle under the action of both gravitational and elastic forces,          .  
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Examples 

 

1. A 40.0-kg box initially at rest is pushed 5.00 m along a rough, horizontal floor with a 
constant applied horizontal force of 130 N. The coefficient of friction between box and 
floor is 0.300. Find (a) the work done by the applied force, , (b) the work done by the 
normal force, (c) the work done by the gravitational force, (d) the work done  by 
frictional force, (e) the change in kinetic energy of the box, and (f) the final speed of the 
box. 

 

Solution  

       𝐹𝑔  𝑚𝑔  4  𝑁, 𝑠  5   𝑚,  𝐹𝑎𝑝   3 𝑁  𝜇𝑘    3    𝑣𝑖   ,  

 

a. Since the applied force is constant, work done by this force is given by 𝑊𝑎𝑝  𝐹𝑎𝑝𝑠𝑐𝑜𝑠𝜃  

Moreover, the applied force is parallel to the direction of motion. Thus, 𝜃     and 
𝑐𝑜𝑠𝜃     The work done by the applied constant horizontal force is 𝑊𝑎𝑝  𝐹𝑎𝑝𝑠  

65 𝐽  

b. The normal force is perpendicular to the direction of motion and thus does no work. That 
is, work done by the normal force 𝐹𝑁 is  𝑊𝑁  𝐹𝑁𝑠𝑐𝑜𝑠9     

c. Just like the normal force, the gravitational force is perpendicular to the direction of 
motion, and hence 𝑊𝑔  𝐹𝑔𝑠𝑐𝑜𝑠9      

d. The work done by frictional force 𝑓𝑘 is 𝑊𝑓  𝑓𝑘𝑠𝑐𝑜𝑠𝜃, where 𝜃 is the angle between the 

displacement and frictional force. Frictional force is always opposite to the direction of 

𝑊𝑓   𝜇𝑘𝐹𝑁𝑠   𝜇𝑘𝑚𝑔𝑠   6  𝐽  

 𝐾𝐸  𝑊𝑡𝑜𝑡𝑎𝑙  𝑊𝑎𝑝  𝑊𝑁  𝑊𝑔  𝑊𝑓  5 𝐽  

motion and hence 𝜃   8  , 𝑐𝑜𝑠 8       The work done by friction is thus 
𝑊𝑓   𝑓𝑘𝑠   𝜇𝑘𝐹𝑁𝑠   In this example, the normal force on the box is equal to its 

weight. It then follows 

e. According to the work-energy theorem, the change in the kinetic energy of the box is 
equal to the total work done on (or work done by net force) on it. That is,  

f. From  𝐾𝐸  
 

 
𝑚(𝑣𝑓

  𝑣𝑖
 )  5 𝐽   we obtain 𝑣𝑓  5

𝑚

𝑠
  

 

2. A 10.0-kg block is released from rest at point A in Figure 6.5. The track is frictionless 
except for the portion between points B and C, which has a length of 6.00 m. The block 
travels down the track, hits a spring of force constant 2250 N/m, and compresses the 
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Fig.6.5: Block sliding down a frictionless track toward a rough level surface 

 

 

 

 

spring 0.300 m from its equilibrium position before coming to rest momentarily. 
Determine (a)The speed of the block at point B, (b)The speed of the block at point C, (c) 
the coefficient of kinetic friction between the block and the rough surface between 
points B and C, and (d) The speed of the block after travelling 2.0m on the rough plane. 

 

Solution 

  𝑚        𝑘𝑔, 𝑣𝐴        𝑘     5  𝑁 𝑚       𝑥     3  𝑚 

 

(a) The portion of the track from point A to B is frictionless and thus mechanical energy is 
conserved. That is,  

 

𝑀𝐸A   𝑀𝐸B or 𝐾𝐸𝐴  𝑈𝐴  𝐾𝐸𝐵  𝑈𝐵   

 

Choosing the gravitational potential energy to be zero on the horizontal surface, we see that  

𝑈𝐵     Moreover, since 𝑣𝐴     𝐾𝐸𝐴  
 

 
𝑚𝑣𝐴

     We therefore notice that  
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𝑊𝑛𝑒𝑡   𝜇𝑘𝑚𝑔𝑠   6  𝜇𝑘𝐽  

𝑲𝑬𝑪  𝑲𝑬𝑩  
𝟏

𝟐
𝒎𝒗𝒄

𝟐  
𝟏

𝟐
𝒎𝒗𝑩

𝟐   𝟏𝟗𝟖 𝟕𝟓𝑱   𝟔𝟎𝟎𝝁𝒌𝑱 

 

   𝑈𝐴  𝐾𝐸𝐵  

or  

   𝑚𝑔 𝐴  
 

 
𝑚𝑣𝐵

 .  

 

Using  𝐴  3   𝑚 and 𝑔     𝑚 𝑠 , we obtain 𝑣𝐵  7 746
𝑚

𝑠
  

(b) Consider motion of the block from point C to a point G, where it momentarily comes to 
rest after compressing the spring. Since there is no frictional force, mechanical energy of 
the block-spring system is conserved. That is, 

 

𝑀𝐸𝐶  𝑀𝐸𝐺 . 

 

We observe that 𝑀𝐸𝐶  
 

 
𝑚𝑣𝑐

  and 𝑀𝐸𝐺  
 

 
𝑘𝑥 . The speed at point C is then 𝑣𝑐  4 5

𝑚

𝑠
  

 

(c) The coefficient of kinetic friction can be obtained applying the work-energy theorem to 
the motion from point B to C. One observes that  

 

𝐾𝐸𝐶  𝐾𝐸𝐵  𝑊𝑛𝑒𝑡. 

 

Since the net horizontal force on the block is the kinetic friction 𝑓𝑘  𝜇𝑘𝑚𝑔, the work done by 
the net force is  

 

 

Using  𝑣𝐵  7 746 𝑚 𝑠 and 𝑣𝑐  4 5 𝑚 𝑠, we obtain  
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Fig. 6.6: A ball rolling down a smooth track 

 

 

 

 

Exercises 

1. If it takes 4.00 J of work to stretch a Hooke’s law spring 10.0 cm from its unstretched length, 
determine the extra work required to stretch it an additional10.0 cm.  

2. An inclined plane of angle   3 ° has a spring of force constant k = 500N/m fastened 
securely at the bottom so that the spring is parallel to the surface as shown in Figure 6.7. 
Use m=3.5 Kg, a distance d=0.300 m from the spring and neglect friction. From this position, 
the block is projected downward toward the spring with speed v = 0.750 m/s. By what 
distance is the spring compressed when the block momentarily comes to rest? 

 

Fig. 6.7 

 

𝝁𝒌  𝟎 𝟑𝟑  

𝐾𝐸𝐷  𝐾𝐸𝐵  𝑊𝑛𝑒𝑡 

 

 
𝑚𝑣𝐷

  
 

 
𝑚𝑣𝐵

   𝜇𝑘𝑚𝑔𝑠
   

 

 

(d) The speed of the block at a point D  𝑚 from point B is obtainable using the work-energy 
theorem. We can then write 

 

or 

 

Using 𝑠     𝑚  we get 𝑣𝐷  6 84
𝑚

𝑠
 

 

3. A ball of mass 350 g starts from rest at position A at the top of the smooth track. Find (a) 
the total energy at A, (b) the total energy at B, (c) the velocity of the ball at B, and (d) the 
velocity of the ball at C. 
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3. In problem 2 above, how would the value of x change if the inclined plane is rough surface 
with      5?. 

4. Two objects with masses    4   and Kgm 52  , slide past a fixed pulley and are 

attached together by inextensible rope of length   3  (Figure 6.8). If initially the masses 
are at the same vertical height above ground and are then set into motion, what is the total 
kinetic energy of the masses when the vertical separation between them becomes 0.6m? 

 

Fig. 6.8 

 

6.3 Power 

Time considerations aren’t involved directly in the definition of work. If you lift a barbell weighing 
400 N through a vertical distance of 0.5 m at constant velocity, you do 200 J of work on it, whether it 
takes you 1 second, 1 hour, or 1 year to do it. Often, though, we need to know how quickly work is 
done. The time rate at which work is done or energy is transferred is called power. Like work and 
energy, power is a scalar quantity. We define average power as follows: 

When a quantity of work    is done during a time interval   , the average power     , or work per 
unit time, is defined as 

     
  

  
         (6.13) 

The SI unit of power is watts (W), where 1W=1J/s. For many applications, power is measured in 
kilowatts or megawatts (1 MW = 106 W). Power units can be used to define new units of work or 
energy. The kilowatt-hour (kWh) is the usual commercial unit of electrical energy. One kilowatt-hour 
is the total work done in 1 hour (3600 s) when the power is 1 kilowatt (103 J/s). so 

 

               36      3 6   . 

 

The kilowatt-hour is a unit of work or energy, not power. 

 In the limit of , the average power becomes instantaneous power. Suppose a force F parallel 

to the displacement is applied on an object. The work done on the object by this force when the 
object is displaced by     is          and the average power is expressible as  

 

     
  

  
  (

  

  
)        . 
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The instantaneous power is the limit of      as the time interval    approaches zero. It the follows 
that  

                   (6.14) 

where    is the instantaneous speed.  

 

6.4 Chapter Summary 

The work done on a particle by a constant force  ⃗ during displacement  ⃗ is          (work done 

by a constant force), in which   is the constant angle between the directions of  ⃗ and  ⃗.Only the 

component of  ⃗ that is along the displacement  ⃗  can do work on the object. 

Work done can be positive, negative or zero depending on the angle   between the force and the 
displacement. The work done is positive when the force has a component in the same direction as 
the displacement (     9   . When the force has a component opposite to the displacement 
(9      8    , the work done is negative. When the force is perpendicular to the displacement, 
  9   and the work done by the force is zero.  

Work is said to be done on an object by a force if (a) the force is not perpendicular to the 
displacement (  9  ); and (b) the force displaces the object.  

Work-energy theorem: For a particle, a change     in the kinetic energy equals the work       
done by the net force on the particle:  

                    (work-kinetic energy theorem), 

 in which     is the initial kinetic energy of the particle and     is the final kinetic energy. 

Work done by a spring force: If an object is attached to the spring's free end, the work     done on 

the object by the spring force when the object is moved from an initial position    to a final position 
   is 

        *
 

 
   

  
 

 
   

 +. 

Elastic potential energy of a spring stretched or compressed by an amount   is  

     
 

 
    

Gravitational potential energy of a mass   at a height   from the surface of the earth is                                            
       

Work done by gravitational force is equal to the negative of the change in gravitational potential 

energy.  That is,     [         ]      . 

The law of conservation of mechanical energy states that “In the absence of friction force, the total 
mechanical energy (kinetic plus potential) is constant”; that is,  

                , 

where U may include both gravitational and elastic potential energies. 

When friction forces exist, the change in mechanical energy of a system is equal to the work done by 
the frictional force. That is,  
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Power is the rate of doing work.  

6.5 Conceptual Questions 

1. Frictional force is an example of a non-conservative force. Describe a situation in work done 
by frictional forces are useful and harmful.  

2. A man carries a hand bag by hanging on his hand and moves horizontally where the bag 
does not move up or down. What is the work done on the bag? The man gets tired after 
some time of the movement. Why?  

 

6.6 Problems 

1. Persons A, B ,andC can do a piece of work in 20, 30, and 60 days, respectively. In how many 
days can A do the work if he is assisted by B and C on every third day?  a) 12 days  b) 15 days  
c) 16 days  d) 18 days.  

2. In which case in Figure H1 would the work done be zero, negative? (F denotes force andd 
denotes displacement).  

 

Figure H1. 

 

3. Determine the potential energies at points A, B, C, D, and E in Figure H2. Assume the ball 
bounces down the stairs from a potential energy at the top of the plane being 50 J.  
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Figure H2. 

 

4. Compare the work done values indicated in Figure H3. Assume the block starts from rest at 
the top of the hill and skids on a frictionless surface with constant velocity after reaching the 
bottom of the hill.  

 

Figure H3. 

5. A 5.00- kg particle starts from the origin at time zero. Its velocity as a function of time is 

given by  ⃗  6   ̂     ̂ where v


is in meters per second and t is in seconds. Determine the 
power injected into the system of the particle as a function of time. 

6. An 8.0 kg block is moving at 3.2 m/s. A net force of 10 N is constantly applied on the block in 
the direction of its movement, until it has moved 16 m. What is the approximate final 
velocity of the block? 

7. Suppose a man is pulling a loaded 50.0-kg sled on a snow. The coefficient of kinetic friction 
between the sled and snow is 0.2. (a) If the man again pulls the sled 5.00 m by exerting a 
force of 1.20 x 102 N at an angle of 0°. Find the work done on the sled by friction, and the net 
work done. (b) Repeat the calculation if the applied force is exerted at an angle of 30.0° with 
the horizontal.  

8. A constant force of 35 N is applied to an object at an angle of 45 with the horizontal. If the 
object is pulled 12 m at an angle of  5 with the horizontal, how much work is done in the 
process of moving the object?  

9. What is the minimum amount of work in Joules that a 60 kg man must do in order to climb 
up a tree house that is 3 meters high? 

10. A body of mass m=2 kg is dropped from h=70 cm above a horizontal platform that is fixed to 
one end of an elastic spring, as shown in the Figure E1. As a result, the spring is compressed 
by an amount of Δy = 20 cm. What is the spring constant of the spring? 

11. The gravitational acceleration is g=9.8 m/s2 and the air resistance is negligible. What is the 
total mechanical energy of the ball by the time the spring is compressed by 10 cm?  
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Figure E1. 

 

12. A mass m=3 kg that lies on a horizontal surface is connected to another mass M=6 kg, as 
shown in Figure E2. The coefficient of kinetic friction between mass m and the surface is 
μk=0.1. If the system is released from rest, what is the squared velocity of mass m, when 
mass M as descended a distance of h=9m? The gravitational acceleration is g=9.8 m/s2. 

 

Figure E2. 

13. In the Figure E3, a 2.0kg package slides along a floor with speedv1 = 4.0m/s. It then runs into 
and compresses a spring, until the package momentarily stops. Its path to the initially 
relaxed spring is frictionless, but as it compresses the spring, a kinetic friction force from the 
floor, of magnitude 15 N, acts on it. The spring constant is 10,000 N/m. By what distance d is 
the spring compressed when the package stops? What is the average value of power 
dissipated by the friction force during this time interval? 

 

Figure E3 

 

14. Two celestial bodies have masses    6        and    7 3        have the 
distance between them changed from     7     to     75    during a period of 
one quarter of a year. Determine the work done by the gravitational interaction force and 
the average power during the duration. 

 

 

S 

S 

S 

S
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7 Linear Momentum 

 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Define linear momentum, 

 Explain the relationship between momentum and force, 

 State kinetic energy of motion in terms of momentum 

 Relate collision and momentum 

 Solve problems related to various types of collision 

 

Introduction 

What happens when two automobiles collide? To begin answering such questions, we introduce 
momentum. Intuitively, anyone or anything that has a lot of momentum is going to be hard to stop. 
Physically, the more momentum an object has, the more force has to be applied to stop it in a given 
time. This concept leads to one of the most powerful principles in physics: conservation of 
momentum. Using this law, complex collision problems can be solved without knowing much about 
the forces involved during contact. We’ll also be able to derive information about the average force 
delivered in an impact. With conservation of momentum, we’ll have a better understanding of what 
choices to make when designing an automobile or a rocket, or when addressing a football or 
basketball training. 

7.1 The Concept of Momentum and Impulse 

Learning outcome 

After completing this section, students are expected to: 

 Define linear impulse. 

 Explain the relationship between momentum and impulse. 

 Calculate momentum given mass and velocity.  

 Describe effects of impulses in everyday life. 

 Solve simple problems involving momentum and impulse 

The linear momentum (or simply momentum) ⃗⃗⃗of a body of mass m moving with velocity  ⃗⃗⃗ is 

defined as 

 ⃗⃗⃗    ⃗⃗⃗       (7-1) 
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Doubling either the mass or the velocity of an object doubles its momentum; doubling both 

quantities quadruples its momentum. Momentum is a vector quantity. Its components in Cartesian 

coordinates are 

                and               (7-2) 

where   is the momentum of the object in the x – direction,   its momentum in the y – direction 

and   its momentum in the z – direction. 

The magnitude of the momentum 

  √  
    

    
        (7-3) 

of an object of mass m can be related to its kinetic energy   : 

   
  

  
        (7-4) 

This relationship is easy to prove using the definitions of kinetic energy and momentum and is valid 

for objects travelling at speeds much less than the speed of light. Curiously, there is no named SI unit 

for measuring momentum. Momentum in SI units is measured in units of kg m/s. 

Changing the momentum of an object requires the application of a force. This is, in fact, how 

Newton originally stated his second law of motion. Starting from the more common version of the 

second law, we have 

 ⃗⃗⃗      ⃗⃗⃗   
  ⃗⃗⃗

  
 

    ⃗⃗⃗ 

  
 

where the mass m and the force are assumed constants. The quantity in parentheses is just the 

momentum, so we have the following result: 

The change in an object’s momentum   ⃗⃗⃗ divided by the elapsed time    equals the constant net 

force  ⃗⃗⃗    acting on the object:  

  ⃗⃗⃗

  
 

                  

             
  ⃗⃗⃗        (7-5) 

This equation is also valid when the forces are not constant, provided the limit is taken as    
becomes infinitesimally small. Equation (7.5) says that if the net force on an object is zero, the 
object’s momentum doesn’t change. In other words, the linear momentum of an object is conserved 

when  ⃗     . Equation (7.5) also shows us that changing an object’s momentum requires the 
continuous application of a force over a period of time    leading to the definition of impulse. If a 

constant force  ⃗ acts on an object, the impulse  ⃗ delivered to the object over a time interval    is 
given by 

 ⃗   ⃗⃗⃗         (7-6) 
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Impulse is a vector quantity with the same direction as the constant force acting on the object. 

When a single constant force  ⃗⃗⃗ acts on an object, (7.6) can be written as  

 ⃗   ⃗⃗⃗     ⃗⃗⃗    ⃗⃗⃗    ⃗⃗⃗      (7-7) 

which is a special case of the impulse–momentum theorem. Equation (7.7) shows that the impulse 

of the force acting on an object equals the change in momentum of that object. That equality is true 

even if the force is not constant, as long as the time interval    is taken to be arbitrarily small. 

In real-life situations, the force on an object is only rarely constant. To analyze the case of variable 

force with rather complex interaction of bodies, it’s useful to define an average force  ⃗⃗⃗  . The 

average force is the constant force delivering the same impulse to the object in the time interval    

as the actual time-varying force. We can then write the impulse–momentum theorem as 

 ⃗⃗⃗⃗⃗⃗       ⃗⃗⃗       (7-8) 

 

Eample7.1 Teeing off:  

A golf ball with mass    ×     kg is struck 
with a club as in Figure 7.1. The force on the 
ball varies from zero when contact is made up 
to some maximum value (when the ball is 
maximally deformed) and then back to zero 
when the ball leaves the club. Assume that 
the ball leaves the club face with a velocity of 
44 m/s. (a) Find the magnitude of the impulse 
due to the collision. (b) Estimate the duration 
of the collision and the average force acting 
on the ball. 

 

 

 

Figure 7-1 (Example 7.1) During impact, the club 
head momentarily flattens the side of the golf ball 

Solution 

(a) Find the impulse delivered to the ball. The problem is essentially one dimensional. Note that vi= 
0, and calculate the change in momentum, which equals the impulse: 

 

            5  ×        (44
 

s
)             s 

 

(b) Estimate the duration of the collision and the average force acting on the ball. Estimate the time 
interval of the collision,   , using the approximate displacement (radius of the ball) and its average 
speed (half the maximum speed): 

 

   
  

   
 

 ×      

     s
 9  ×     s 
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Estimate the average force from Equation (7.8): 

 

    
  

  
 

         s

9  ×     s
   4 ×      

 

REMARKS: This estimate shows just how large such contact forces can be. A good golfer achieves 
maximum momentum transfer by shifting weight from the back foot to the front foot, transmitting 
the body’s momentum through the shaft and head of the club. This timing, involving a short 
movement of the hips, is more effective than a shot powered exclusively by the arms and shoulders. 
Following through with the swing ensures that the motion isn’t slowed at the critical instant of 
impact. 

 

Exercises  

1. What average club speed would double the average force? (Assume the final velocity 
is unchanged.) 

2. A 0.150-kg baseball, thrown with a speed of 40.0 m/s, is hit straight back at the pitcher with 
a speed of 50.0 m/s. (a) What is the magnitude of the impulse delivered by the bat to the 
baseball? (b) Find the magnitude of the average force exerted by the bat on the ball if the 
two are in contact for      ×     s. ANSWERS (a) 13.5 kg m/s (b) 6.75 kN 

 

BOXING AND BRAIN INJURY (application of impulse) 

 

Boxers in the nineteenth century used their bare fists. In modern boxing, fighters wear padded 
gloves. How do gloves protect the brain of the boxer from injury? Also, why do boxers often “roll 
with the punch”? 

 

EXPLANATION: The brain is immersed in a cushioning fluid inside the skull. If the head is struck 
suddenly by a bare fist, the skull accelerates rapidly. The brain matches this acceleration only 
because of the large impulsive force exerted by the skull on the brain. This large and sudden force 
(large     and small   ) can cause severe brain injury. Padded gloves extend the time    over which 
the force is applied to the head. For a given impulse      , a glove results in a longer time interval 
than a bare fist, decreasing the average force. Because the average force is decreased, the 
acceleration of the skull is decreased, reducing (but not eliminating) the chance of brain injury. The 
same argument can be made for “rolling with the punch”: If the head is held steady while being 
struck, the time interval over which the force is applied is relatively short and the average force is 
large. If the head is allowed to move in the same direction as the punch, the time interval is 
lengthened and the average force reduced. 
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Eample7.2  

How good are the bumpers? In a crash test, a car of mass   5 ×     kg collides with a wall and 
rebounds as in Figure 7.2a. The initial and final velocities of the car are vi =-15.0 m/s and vf = 2.60 
m/s, respectively. If the collision lasts for 0.150 s, find (a) the impulse delivered to the car due to the 
collision and (b) the magnitude and direction of the average force exerted on the car. 

Figure 7-2 Example 7.2) (a) This car’s momentum changes as a result of its collision with the wall. (b) 
In a crash test (an inelastic collision), much of the car’s initial kinetic energy is transformed into the 
energy it took to damage the vehicle 

Solution: 

(a) Find the impulse delivered to the car. 

Calculate the initial and final momenta of the car 

       (   ×       )                 ×            

       (   ×       )                ×            

The impulse is just the difference between the final and initial momenta: 

                        ×                ×            

(b) Find the average force exerted on the car. Apply Equation (7.8), the impulse–momentum 
theorem 

    
  

  
 

    ×           

       
     ×       

 

REMARKS: If the car doesn’t rebound off the wall, the average force exerted on the car is smaller 
than the value just calculated. With a final momentum of zero, the car undergoes a smaller change 
in momentum. During the collision the state of the wall is hardly changed due to the fact it has much 
larger mass compared to that of the car. Similarly, although a ball has greater velocity, a player has 
much greater mass, and thus the momentum of the player is much greater than the momentum of 
the football, as you might guess. As a result, the player’s motion is only slightly affected if he catches 
the ball. We shall quantify what happens in such collisions in terms of momentum in later sections. 

Exercises 
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1. When a person is involved in a car accident, why is the likelihood of injury greater in a head-
on collision as opposed to being hit from behind? Answer using the concepts of relative 
velocity, momentum, and average force. 

2. Suppose the car doesn’t rebound off the wall, but the time interval of the collision remains 
at 0.150 s. In this case, the final velocity of the car is zero. Find the average force exerted on 

the car. ANSWER     ×       

7.2 Conservation of Momentum  

Learning outcome 

After completing this section, students are expected to: 

 Describe the principle of conservation of momentum. 

 Derive an expression for the conservation of momentum. 

 Explain conservation of momentum with examples. 

 Solve simple problems involving conservation of momentum 

 

When a collision occurs in an isolated system, the total momentum of the system doesn’t change 
with the passage of time. Instead, it remains constant both in magnitude and in direction. The 
momenta of the individual objects in the system may change, but the vector sum of all the momenta 
will not change. The total momentum is therefore said to be conserved. In this section, we will see 
how the laws of motion lead us to this important conservation law. 

 

A collision may be the result of physical contact between two objects, as illustrated in Figure 7.3a. 
This is a common macroscopic event, as when a pair of billiard balls or a baseball and a bat strike 
each other. By contrast, because contact on a submicroscopic scale is hard to define accurately, the 
notion of collision must be generalized to that scale. Forces between two objects arise from the 
electrostatic interaction of the electrons in the surface atoms of the objects. Electric charges are 
either positive or negative. Charges with the same sign repel each other, while charges with opposite 
sign attract each other. To understand the distinction between macroscopic and microscopic 
collisions, consider the collision between two positive charges, as shown in Figure 7.3b. Because the 
two particles in the figure are both positively charged, they repel each other. During such a 
microscopic collision, particles need not touch in the normal sense in order to interact and transfer 
momentum. 

 

 

Figure 7-3(a) A collision 
between two objects resulting 
from direct contact. (b) A 
collision between two 
charged objects (in this case, 
a proton and a helium 
nucleus). 
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Figure 7.4 shows an isolated system of two particles before and after they collide. By “isolated,” we 
mean that no external forces, such as the gravitational force or friction, act on the system. Before 
the collision, the velocities of the two particles are ⃗  and  ⃗  ; after the collision, the velocities are 
 ⃗  and  ⃗  . The impulse–momentum theorem applied to m1becomes 

 

 ⃗        ⃗      ⃗   

Likewise, for m2, we have  

 ⃗        ⃗      ⃗   

 

where  ⃗   is the average force exerted by m2 on m1 during the collision and  ⃗  is the average force 
exerted by m1 on m2 during the collision, as in Figure 7.3a. 

 

 

Figure7-4: Before and after a head-on collision between two particles. The momentum of each 
object changes during the collision, but the total momentum of the system is constant. Notice that 
the magnitude of the change of velocity of the lighter particle is greater than that of the heavier 
particle, which is true in general. 

 

We use average values for  ⃗  and  ⃗  even though the actual forces may vary in time in a 
complicated way. Newton’s third law states that at all times these two forces are equal in magnitude 

and opposite in direction:  ⃗     ⃗  . 

 

In addition, the two forces act over the same time interval. As a result, we have 

 ⃗⃗⃗       ⃗⃗⃗     

or  

   ⃗⃗⃗      ⃗⃗⃗    (   ⃗⃗⃗      ⃗⃗⃗  ) 

after substituting the expressions obtained for  ⃗⃗⃗  and  ⃗⃗⃗  . This equation can be rearranged to give 
the following important result: 

   ⃗⃗⃗      ⃗⃗⃗      ⃗⃗⃗      ⃗⃗⃗       (7-9) 

This result is a special case of the law of conservation of momentum and is true of isolated systems 
containing any number of interacting objects. 
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When no net external force acts on a system, the total momentum of the system remains constant in 
time. 

Defining the isolated system is an important feature of applying this conservation law. A cheerleader 

jumping upwards from rest might appear to violate conservation of momentum, because initially her 

momentum is zero and suddenly she’s leaving the ground with velocity v. The flaw in this reasoning 

lies in the fact that the cheerleader isn’t an isolated system. In jumping, she exerts a downward force 

on Earth, changing its momentum. This change in Earth’s momentum isn’t noticeable, however, 

because of Earth’s gargantuan mass compared to the cheerleader’s. When we define the system to 

be the cheerleader and Earth, momentum is conserved. 

Action and reaction, together with the accompanying exchange of momentum between two objects, 

is responsible for the phenomenon known as recoil. Everyone knows that throwing a baseball while 

standing straight up, without bracing one’s feet against Earth, is a good way to fall over backwards. 

This reaction, an example of recoil, also happens when you fire a gun or shoot an arrow. 

Conservation of momentum provides a straightforward way to calculate such effects, as the next 

example shows. 

Example 7.3 The Archer:  An archer stands at rest on 
frictionless ice; his total mass including his bow and 
quiver of arrows is 60.00 kg. (See Fig. 7.5.) (a) If the 
archer fires a 0.030 0-kg arrow horizontally at 50.0 
m/s in the positive x - direction, what is his 
subsequent velocity across the ice? (b) He then fires 
a second identical arrow at the same speed relative 
to the ground but at an angle of 30.0° above the 
horizontal. Find his new speed. (c) Estimate the 
average normal force acting on the archer as the 
second arrow is accelerated by the bowstring. 
Assume a draw length of 0.800 m  

Figure 7-5(Example 
7.3) An archer fires 
an arrow 
horizontally to the 
right. Because he is 
standing on 
frictionless ice, he 
will begin to slide to 
the left across the 
ice. 

Solution  

(a) Find the archer’s subsequent velocity across the ice. Write the conservation of momentum 
equation for the x - direction.       

Let m1 and v1f be the archer’s mass and velocity after firing the arrow, respectively, and m2 and v2fthe 
arrow’s mass and velocity. Both velocities are in the x - direction. Substitute pi= 0 and expressions for 
the final momenta:  

              

Solve for v1fand substitute m1 = 59.97 kg, m2 = 0.030 0 kg, and v2f = 50.0 m/s: 

     
  

  
      

         

         
     

 

 
        

 

 
 

(b) Calculate the archer’s velocity after he fires a second arrow at an angle of 30.0° above the 
horizontal.  

Write the x - component of the momentum equation with m1 again the archer’s mass after firing the 
first arrow as in part (a) and m2 the mass of the next arrow: 
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Solve for v1f, the archer’s final velocity, and substitute: m1 = 59.97 kg, m2 = 0.030 0 kg, and v2f = 50.0 
m/s,                

    
  

       
    

  

       
        

    
        

        
(       

 

 
)  

         

        
(  

 

 
)              

 

 
 

(c) Estimate the average normal force acting on the archer as the arrow is accelerated by the 
bowstring. 

Use kinematics in one dimension to estimate the acceleration of the arrow: 

     
       

Solve for the acceleration and substitute values setting v=v2f, the final velocity of the arrow: 

  
     

 

   
 

           

          
     ×        

 

Find the time the arrow is accelerated using 

            
    

 
 

      

    ×        
           

Write the y - component of the impulse–momentum theorem: 

           ,         
   

  
 

         

   

      
                            

        
        

The average normal force is given by the archer’s weight plus the reaction force R of the arrow on 
the archer: ∑           , 

                 (    
 

  
)                  ×       

REMARKS: The negative sign on    indicates that the archer is moving opposite the arrow’s 
direction, in accordance with Newton’s third law. Because the archer is much more massive than the 
arrow, his acceleration and velocity are much smaller than the acceleration and velocity of the 
arrow. A technical point: the second arrow was fired at the same velocity relative to the ground, but 
because the archer was moving backwards at the time, it was travelling slightly faster than the first 
arrow relative to the archer. Velocities must always be given relative to a frame of reference. 

Notice that conservation of momentum was effective in leading to a solution in parts (a) and (b). The 
final answer for the normal force is only an average because the force exerted on the arrow is 
unlikely to be constant. If the ice really were frictionless, the archer would have trouble standing. In 
general, the coefficient of static friction of ice is more than sufficient to prevent sliding in response 
to such small recoils. 

 

Exercise 

1. Would firing a heavier arrow necessarily increase the recoil velocity? Explain. 

2. A 70.0-kg man and a 55.0-kg woman holding a 2.50-kg purse on ice skates stand facing each 
other. (a) If the woman pushes the man backwards so that his final speed is 1.50 m/s, with 
what average force did she push him, assuming they were in contact for 0.500 s? (b) What is 
the woman’s recoil speed? (c) If she now throws her 2.50-kg purse at him at a 20.0° angle 
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above the horizontal and at 4.20 m/s relative to the ground, what is her subsequent speed?   
ANSWERS (a)      ×      (b) 1.83 m/s (c) 2.09 m/s 

 

 

 

 

 

 

7.3 Collisions in One Dimension and in Two Dimensions 

Learning outcome 

After completing this section, students are expected to: 

 Identify the types of collision 

 Define inelastic collision. 

 Explain perfectly inelastic collision  

 Apply an understanding of collisions to everyday life 

 Describe an elastic collision of two objects in one dimension. 

 Solve simple problems involving collisions 

 

We have seen that for any type of collision, the total momentum of the system just before the 
collision equals the total momentum just after the collision as long as the system may be considered 
isolated. The total kinetic energy, on the other hand, is generally not conserved in a collision because 
some of the kinetic energy is converted to internal energy, sound energy, and the work needed to 
permanently deform the objects involved, such as cars in a car crash. We define an inelastic collision 
as a collision in which momentum is conserved, but kinetic energy is not. The collision of a rubber 
ball with a hard surface is inelastic, because some of the kinetic energy is lost when the ball is 
deformed during contact with the surface. When two objects collide and stick together, the collision 
is called perfectly inelastic. For example, if two pieces of putty collide, they stick together and move 
with some common velocity after the collision. If a meteorite collides head on with Earth, it becomes 
buried in Earth and the collision is considered perfectly inelastic. Only in very special circumstances 
is all the initial kinetic energy lost in a perfectly inelastic collision. 

 

An elastic collision is defined as one in which both momentum and kinetic energy are conserved. 
Billiard ball collisions and the collisions of air molecules with the walls of a container at ordinary 
temperatures are highly elastic. Macroscopic collisions such as those between billiard balls are only 
approximately elastic, because some loss of kinetic energy takes place—for example, in the clicking 
sound when two balls strike each other. Perfectly elastic collisions do occur, however, between 
atomic and subatomic particles. Elastic and perfectly inelastic collisions are limiting cases; most 
actual collisions fall into a range in between them. 
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As a practical application, an inelastic collision is used to detect glaucoma, a disease in which the 
pressure inside the eye builds up and leads to blindness by damaging the cells of the retina. In this 
application, medical professionals use a device called a tonometer to measure the pressure inside 
the eye. This device releases a puff of air against the outer surface of the eye and measures the 
speed of the air after reflection from the eye. At normal pressure, the eye is slightly spongy, and the 
pulse is reflected at low speed. As the pressure inside the eye increases, the outer surface becomes 
more rigid, and the speed of the reflected pulse increases. In this way, the speed of the reflected 
puff of air can measure the internal pressure of the eye. 

 

We can summarize the types of collisions as follows: 

 In an elastic collision, both momentum and kinetic energy are conserved. 

 In an inelastic collision, momentum is conserved but kinetic energy is not. 

 In a perfectly inelastic collision, momentum is conserved, kinetic energy is not, and the two 
objects stick together after the collision, so their final velocities are the same. 

 

In the remainder of this section, we will treat perfectly inelastic collisions and elastic collisions in one 
dimension 

 

Figure 7-6(a) Before and (b) after a perfectly inelastic head-on collision between two objects. 

7.3.1 Perfectly Inelastic Collisions 

Consider two objects having masses m1 and m2 moving with known initial velocity components 

v1iand v2ialong a straight line, as in Figure 7.6a. If the two objects collide head-on, stick together, and 

move with a common velocity component vf after the collision, then the collision is perfectly inelastic 

(Fig. 7.6b). Because the total momentum of the two-object isolated system before the collision 

equals the total momentum of the combined-object system after the collision, we can solve for the 

final velocity using conservation of momentum alone: 

                          (7-10) 

 

   
 1 1   2 2 

  1  2 
       (7-11) 

It’s important to notice that    ,    , and   represent the x - components of the velocity vectors, so 

care is needed in entering their known values, particularly with regard to signs. For example, in 

Figure 7.6a,    would have a positive value (m1 moving to the right), whereas    would have a 
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negative value (m2 moving to the left). Once these values are entered, Equation (7.11) can be used 

to find the correct final velocity, as shown in Examples 7.4 and 7.5. 

Example 7.4  

A Truck Versus a Compact: A pickup truck with mass      ×        traveling eastbound at +15.0 

m/s, while a compact car with mass      ×        is traveling westbound at -15.0 m/s. (See Fig. 
7.7.) The vehicles collide head-on, becoming entangled. (a) Find the speed of the entangled vehicles 
after the collision. (b) Find the change in the velocity of each vehicle. (c) Find the change in the 
kinetic energy of the system consisting of both vehicles.  

 
Figure 7-7(Example 7.4) 

Solution 

(a) Find the final speed after collision. 

Let m1 and v1i represent the mass and initial velocity of the pickup truck, while m2 and v2ipertain to 
the compact. Apply conservation of momentum:       

Substitute the values and solve for the final velocity,  

                      

   
           

       
 

(    ×       )                ×                    

     ×            ×         
         

(b) Find the change in velocity for each vehicle.  

Change in velocity of the pickup truck is 

                
 

 
     

 

 
            

Change in velocity of the compact car is 

                
 

 
        

 

 
           

(c) Find the change in kinetic energy of the system.  

Calculate the initial kinetic energy of the system:  

    
 

 
(     

       
 )  

 

 
((    ×       )            (   ×       )            ) 
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         ×      

Calculate the final kinetic energy of the system and the change in kinetic energy,  

    
 

 
         

  
 

 
((    ×       ) (   ×       )          ) 

        ×      

                  ×      

REMARKS: During the collision, the system lost almost 90% of its kinetic energy. The change in 
velocity of the pickup truck was only 10.0 m/s, compared to twice that for the compact car. This 
example underscores perhaps the most important safety feature of any car: its mass. Injury is caused 
by a change in velocity, and the more massive vehicle undergoes a smaller velocity change in a 
typical accident. 

 

 

Exercises 

1. If the mass of both vehicles were doubled, how would the final velocity be affected? The 
change in kinetic energy? 

2. Suppose the same two vehicles are both travelling eastward, the compact car leading the 
pickup truck. The driver of the compact car slams on the brakes suddenly, slowing the vehicle 
to 6.00 m/s. If the pickup truck travelling at 18.0 m/s crashes into the compact car, find (a) the 
speed of the system right after the collision, assuming the two vehicles become entangled, (b) 
the change in velocity for both vehicles, and (c) the change in kinetic energy of the system, 
from the instant before impact (when the compact car is travelling at 6.00 m/s) to the instant 
right after the collision. ANSWERS (a) 14.0 m/s (b) pickup truck:              compact 

car:            (c)      ×     J 

 

Example 7.5 The Ballistic Pendulum 

The ballistic pendulum (Fig. 7.8) is a device used to 
measure the speed of a fast - moving projectile such as a 
bullet. The bullet is fired into a large block of wood 
suspended from some light wires. The bullet embeds in 
the block, and the entire system swings up to a height h. 
It is possible to obtain the initial speed of the bullet by 
measuring h and the two masses. As an example of the 
technique, assume that the mass of the bullet, m1, is 5.00 
g, the mass of the pendulum, m2, is 1.000 kg, and h is 5.00 
cm. (a) Find the velocity of the system after the bullet 
embeds in the block. (b) Calculate the initial speed of the 
bullet 

 

Figure 7-8 Example 7.5(Example 7.5) (a) 
Diagram of a ballistic pendulum. Note 
that   ⃗⃗⃗   is the velocity of the system 

just after the perfectly inelastic collision 
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Solution  

(a) Find the velocity of the system after the bullet embeds in the block. Apply conservation of energy 
to the block–bullet system after the collision: 

                                  

Substitute expressions for the kinetic and potential energies. Note that both the potential energy at 
the bottom and the kinetic energy at the top are zero: 

 

 
           

                

Solve for the final velocity of the block–bullet system,      from     
     , 

     √            ×                

(b) Calculate the initial speed of the bullet. Write the conservation of momentum equation and 
substitute expressions. 

                        

Solve for the initial velocity of the bullet, and substitute values: 

    
     

  
     

                     

    ×         
         

REMARKS Because the impact is inelastic, it would be incorrect to equate the initial kinetic energy of 
the incoming bullet to the final gravitational potential energy associated with the bullet–block 
combination. The energy isn’t conserved! 

Exercises 

1. List three ways by which mechanical energy can be lost from the system in this experiment.  

2. A bullet with mass 5.00 g is fired horizontally into a 2.000-kg block attached to a horizontal 
spring. The spring has a constant 6    ×         and reaches a maximum compression of 
6.00 cm. (a) Find the initial speed of the bullet–block system. (b) Find the speed of the bullet. 
ANSWERS (a) 1.04 m/s (b) 417 m/s 

7.3.2 Elastic Collisions 

Now consider two objects that undergo an elastic head-on collision (Fig. 7.9). In this situation, both 
the momentum and the kinetic energy of the system of two objects are conserved. We can write 
these conditions as  

                            (7-12) 

and 

1

2
     

  1

2
     

  1

2
     

  1

2
     

      (7-13) 
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where v is positive if an object moves to the right and negative if it moves to the left. In a typical 
problem involving elastic collisions, there are two unknown quantities, and Equations (7.12) and 
(7.13) can be solved simultaneously to find them. 

 

These two equations are linear and quadratic, respectively. An alternate approach simplifies the 
quadratic equation to another linear equation, facilitating solution. Cancelling the factor ½ in 
Equation (7.11), we rewrite the equation as 

 

  (   
     

 )       (   
     

 ) 

 

Here we have moved the terms containing m1 to one side of the equation and those containing m2 
to the other. Next, we factor both sides of the equation: 

 

  (       )(       )    (       )(       )  (7-14) 

 

Now we separate the terms containing m1 and m2 in the equation for the conservation of 
momentum (7.12) to get 

 

  (       )    (       )    (7-15) 

 

Next, we divide Equation (7.14) by Equation (7.15), producing 

                      (7-16) 

 

Gathering initial and final values on opposite sides of the equation gives 

 

         (       ).      (7-17) 

 

This equation, in combination with Equation (7.12), will be used to solve problems dealing with 
perfectly elastic head-on collisions. Equation (7.16) shows that the sum of the initial and final 
velocities for object 1 equals the sum of the initial and final velocities for object 2. According to 
Equation (7.17), the relative velocity of the two objects before the collision,        , equals the 

negative of the relative velocity of the two objects after the collision,  (       ). To better 

understand the equation, imagine that you are riding along on one of the objects. As you measure 
the velocity of the other object from your vantage point, you will be measuring the relative velocity 
of the two objects. In your view of the collision, the other object comes toward you and bounces off, 
leaving the collision with the same speed, but in the opposite direction. This is just what Equation 
(7.17) states. 
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Before an elastic collision the two objects move 
independently. 

 

After the collision the object velocities change, 
but both the energy and momentum of the 
system are conserved. 

 

Figure 7-9(a) Before and (b) after an elastic head - on collision between two hard spheres. Unlike an 
inelastic collision, both the total momentum and the total energy are conserved. 

 

ROBLEM-SOLVING STRATEGY - One-Dimensional Collisions 

The following procedure is recommended for solving one - dimensional problems involving collisions 
between two objects: 

1. Coordinates. Choose a coordinate axis that lies along the direction of motion. 

2. Diagram. Sketch the problem, representing the two objects as blocks and labelling velocity 
vectors and masses. 

3. Conservation of Momentum. Write a general expression for the total momentum of the 
system of two objects before and after the collision, and equate the two, as in Equation 
(7.12). On the next line, fill in the known values. 

4. Conservation of Energy. If the collision is elastic, write a general expression for the total 
energy before and after the collision, and equate the two quantities, as in Equation (7.13) or 
(preferably) Equation (7.17). Fill in the known values. (Skip this step if the collision is not 
perfectly elastic.) 

5. Solve the equations simultaneously. Equations (7.12) and (7.17) form a system of two linear 
equations and two unknowns. If you have forgotten Equation (7.17), use Equation (7.13) 
instead.  

Steps 1 and 2 of the problem-solving strategy are generally carried out in the process of sketching 
and labelling a diagram of the problem. This is clearly the case in our next example, 

 

EXAMPLE 7.6 LET’S PLAY POOL  

Two billiard balls of identical mass move toward each other as in Figure 7.9, with the positive x - axis 
to the right (steps 1 and 2). Assume that the collision between them is perfectly elastic. If the initial 
velocities of the balls are 130.0 cm/s and 220.0 cm/s, what are the velocities of the balls after the 
collision? Assume friction and rotation are unimportant. 

SOLUTION 

Write the conservation of momentum equation. Because      , we can cancel the masses, then 
substitute      3       s and              s (Step 3): 
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(1)                           

Next, apply conservation of energy in the form of Equation 7.17 (Step 4):  

(2)                 (       ) 

                      (       ) 

(3)                    (       ) 

Now solve Equations (1) and (3) simultaneously by adding them together (Step 5):  

                          

Substitute the answer for    into Equation (1) to get    : 

                                   

REMARKS Notice the balls exchanged velocities—almost as if they’d passed through each other. This 
is always the case when two objects of equal mass undergo an elastic head-on collision. 

QUESTION 7.6 In this example, is it possible to adjust the initial velocities of the balls so that both are 
at rest after the collision? Explain. 

EXERCISE 7.6 Find the final velocities of the two balls if the ball with initial velocity           s  
has a mass equal to onehalf that of the ball with initial velocity      3       s.  

ANSWER      3 33   s;      46 7   s 

7.3.3 Two dimensional (Glancing) Collisions 

In Section 7.2 we showed that the total linear momentum of a system is conserved when the system 
is isolated (i.e., when no external forces act on the system). For a general collision of two objects in 
three-dimensional space, the conservation of momentum principle implies that the total momentum 
of the system in each direction is conserved. However, an important subset of collisions takes place 
in a plane. The game of billiards is a familiar example involving multiple collisions of objects moving 
on a two-dimensional surface. We restrict our attention to a single two-dimensional collision 
between two objects that takes place in a plane, and ignore any possible rotation. For such 
collisions, we obtain two component equations for the conservation of momentum: 

                            

                            

 

We must use three subscripts in this general equation, to represent, respectively, (1) the object in 
question, and (2) the initial and final values of the components of velocity. 

  

Now, consider a two-dimensional problem in which an object of mass    collides with an object of 
mass   that is initially at rest, as in Figure 7.10. After the collision, object 1 moves at an angle   
with respect to the horizontal, and object 2 moves at an angle φ with respect to the horizontal. This 
is called a glancing collision. Applying the law of conservation of momentum in component form, 
and noting that the initial y-component of momentum is zero, we have x - component:  

 

                               s          s       (7-18) 
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                         s         s       (7-19) 

 

If the collision is elastic, we can write a third equation, for conservation of energy, in the form 

 

1

2
     

  1

2
     

  1

2
     

        (7-20) 

 

If we know the initial velocity    and the masses, we are left with four unknowns (   ,    ,  , and 

 ). Because we have only three equations, one of the four remaining quantities must be given in 
order to determine the motion after the collision from conservation principles alone. 

 

If the collision is inelastic, the kinetic energy of the system is not conserved, and Equation (7.20) 
does not apply. 

 

 

 

 

      Before the collision 
 

               After the collision 

Figure 7-10A glancing collision between two objects. 
 
Example 7.7:  Collision at an Intersection  

A car with mass 1.50 × 103 kg travelling east at a 
speed of 25.0 m/s collides at an intersection with a 
2.50 × 103 - kg pickup truck travelling north at a 
speed of 20.0 m/s, as shown in Figure 7.11. Find 
the magnitude and direction of the velocity of the 
wreckage immediately after the collision, 
assuming that the vehicles undergo a perfectly 
inelastic collision (that is, they stick together) and 
assuming that friction between the vehicles and 
the road can be neglected. 

 

 

 

Figure 7-11(Example 7.7) A top view of 
a perfectly inelastic collision between a 
car and a pickup truck 

Solution 

Find the x - components of the initial and final total momenta: 

∑             (     ×       ) (    
 

 
)       ×            
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∑                       ( ×       )       

Set the initial x - momentum equal to the final x - momentum: 

(1)            ×            ( ×       )       

Set the initial y - momentum equal to the final y - momentum: 

∑               (    ×       )                ×            

∑                       ( ×       )       

Set the initial y - momentum equal to the final y - momentum: 

(2)           ×            ( ×       )       

Divide Equation (2) by Equation (1) and solve for  : 

     
     ×      

 

 

     ×      
 

 

     ,        ° 

Substitute this angle back into Equation (2) to find vf: 

   
     ×           

  ×               °
          

REMARKS: It’s also possible to first find the x - and y - components vfx  and vfy of the resultant 
velocity. The magnitude and direction of the resultant velocity can then be found with the 

Pythagorean theorem,    √   
     

 , and the inverse tangent function   

     (       ). Setting up this alternate approach is a simple matter of substituting 

          and            into Equations (1) and (2). 

Exercise 

1. If the car and truck had identical mass and speed, what would the resultant angle have 
been?  

2. A 3.00 - kg object initially moving in the positive x - direction with a velocity of +5.00 m/s 
collides with and sticks to a 2.00-kg object initially moving in the negative y - direction with a 
velocity of –3.00 m/s. Find the final components of velocity of the composite object. Answer 
     3.00 m/s;             s 

7.4 The Concept of Center of Mass 

Learning outcome 

After completing this section, students are expected to: 

 Define point masses. 



General Physics Module Phys 1011 AAU 

  

Linear Momentum 192 

 

 Define the center of mass of an object. 

 Apply the concept of center of mass to everyday life 

 Solve simple problems involving momentum and collisions of rigid bodies 

 

In this section, we describe the overall motion of a system in terms of a special point called the 
center of mass of the system. The system can be either a small number of particles or an extended, 
continuous object, such as a gymnast leaping through the air. We shall see that the translational 
motion of the center of mass of the system is the same as if all the mass of the system were 
concentrated at that point. That is, the system moves as if the net external force were applied to a 
single particle located at the center of mass. This model, the particle model, was introduced in 
Chapter 2. This behavior is independent of other motion, such as rotation or vibration of the system 
or deformation of the system (for instance, when a gymnast folds her body). 

Consider a system consisting of a pair of particles that have different masses and are connected by a 
light, rigid rod (Fig. 7.12). The position of the center of mass of a system can be described as being 
the average position of the system’s mass. The center of mass of the system is located somewhere 
on the line joining the two particles and is closer to the particle having the larger mass. If a single 
force is applied at a point on the rod above the center of mass, the system rotates clockwise (see Fig. 
7.12a). If the force is applied at a point on the rod below the center of mass, the system rotates 
counterclockwise (see Fig. 7.12b). If the force is applied at the center of mass, the system moves in 
the direction of the force without rotating (see Fig. 7.12c). The center of mass of an object can be 
located with this procedure. 

Figure 7-12A force is applied to a system of two particles of unequal 
mass connected by a light, rigid rod.. 

 

Figure 7-13The center of 
mass of two particles of 
unequal mass on the x axis 
is located at    , a point 
between the particles, 
closer to the one having 
the larger mass. 

 

The center of mass of the pair of particles described in Figure 7.13 is located on the x axis and lies 
somewhere between the particles. Its x coordinate is given by 

    
         

     
      (7-21) 

For example, if     ,      , and        , we find that     
 

 
 . That is, the center of mass 

lies closer to the more massive particle. If the two masses are equal, the center of mass lies midway 
between the particles. 

We can extend this concept to a system of many particles with masses mi in three dimensions. The x 
coordinate of the center of mass of n particles is defined to be 
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∑      

∑    
 

 

 
∑         (7-22) 

where   is the x coordinate of the ith particle and the total mass is   ∑    where the sum runs 
over all n particles. The y and z coordinates of the center of mass are similarly defined by the 
equations 

    
 

 
∑              

 

 
∑           (7-23) 

The center of mass can be located in three dimensions by its position vector  ⃗CM. The components of 
this vector are    ,    , and    , defined in Equations (7.22) and (7.23). Therefore, 

 ⃗⃗       ̂      ̂      ̂  
 

 
(∑    

 

 ̂  ∑    

 

 ̂  ∑    

 

 ̂) 

or 

 ⃗   
 

 
∑    ⃗        (7-24) 

 

Where  ⃗  is the position vector of the ith particle, defined by  ⃗     ̂     ̂     ̂.  

 

It’s often possible to guess the location of the center of mass. The center of mass of a homogeneous, 
symmetric body must lie on the axis of symmetry.  

For example, the center of mass of a homogeneous rod lies midway between the ends of the rod, 
and the center of mass of a homogeneous sphere or a homogeneous cube lies at the geometric 
center of the object.  

Several examples involve homogeneous, symmetric objects where the centers of mass coincide with 
their geometric centers. A rigid object in a uniform gravitational field can be balanced by a single 
force equal in magnitude to the weight of the object, as long as the force is directed upward through 
the object’s center of mass. 

 

Example 7.8: Where is the Center Of Mass? 

  

(a) Three objects are located in a coordinate system as shown in Figure 7.14a. Find the center of 
mass. 

(b) How does the answer change if the object on the left is displaced upward by 1.00 m and the 
object on the right is displaced downward by 0.500 m (Fig. 7.14b)? Treat the objects as point 
particles 
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Figure 7-14(Example 7.8) Locating the center of mass of a system of three particles. 

Solution  

(a) Find the center of mass of the system in Figure 7.13a. Apply Equation (7.22) to the system of 
three objects: 

(1)              
∑      

∑    
 

              

        
, 

Compute the numerator and the denominator of Equation (1):  

∑                ,       ∑              , 

substitute into Equation (1).    
         

        
         

b) How does the answer change if the positions of the objects are changed as in Figure 7.13b? 
Because the x-coordinates have not been changed, the x-coordinate of the center of mass is also 
unchanged:  

    
∑      

∑    
 

              

        
 

∑    

 

                                                                

    
         

        
         

REMARKS: Notice that translating objects in the y - direction doesn’t change the x-coordinate of the 
center of mass. The three components of the center of mass are each independent of the other two 
coordinates. 

 

Exercises 

1. If 1.00 kg is added to the masses on the left and right in Figure 7.13a, does the center of 
mass (a) move to the left, (b) move to the right, or (c) remain in the same position? 

2. If a fourth particle of mass 2.00 kg is placed at (0, 0.25 m) in Figure 7.13a, find the x- and y - 
coordinates of the center of mass for this system of four particles. 

Answer xcm 5 0.115 m; ycm 5 0.038 5 m 
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Example 7.9 Tug of War at The Ice Fishing Hole  

Bob and Sherry are lying on the ice, a fishing hole of radius 1.00 m cut in the ice halfway between 
them. A rope of length 10.0 m lies between them, and they both grip it and begin pulling, as in 
Figure 7.15a. Bob has mass of mB= 85.0 kg and Sherry has mass of mS= 48.0 kg, so Sherry reaches the 
hole, first. Where is Bob at that time? Assume the hole is centered on the origin and that Bob and 
Sherry start at xB= 5.00 m and xS= –5.00 m, respectively. Neglect forces of friction. 

 

Figure 7-15 (Example 7.9) (a) Bob and Sherry engage in a tug - of war.(b) (Exercise 7.9) 

 

Solution 

Calculate the center of mass using the initial positions:  

    
         

     
 

                                  

               
        

Find Bob’s position using the center of mass equation and the fact that Sherry reaches the hole first: 

       
         

     
 

                             

      
 

          

 

REMARKS: So when Sherry reaches the edge of the fishing hole, Bob is still nearly two meters away 
from the edge on his side of the hole. 

Exercises 

1. How do the speeds vS of Sherry and vB of Bob compare during the motion? 

2. A man of mass M 5 75.0 kg is standing in a canoe of mass 40.0 kg that is 5.00 m long, as in 
Figure 7.15b. The far end of the canoe is next to a dock. From a position 0.500 m from his 
end of the canoe, he walks to the same position at the other end of the canoe. (a) Find the 
center of mass of the canoe–man system, taking the end of the dock as the origin. (b) 
Neglecting drag forces, how far is he from the dock? (Hint: the final location of the canoe’s 
center of mass will be 2.00 m farther from the dock than the man’s final position, which is 
unknown.)  ANSWERS (a) 3.80 m (b) 3.10 m 
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7.5 Summary 

The linear momentum  ⃗⃗⃗ of an object of mass m moving with velocity  ⃗⃗⃗ is defined as 

 ⃗    ⃗ 

Momentum carries units of kg # m/s. The impulse  ⃗of a constant force  ⃗⃗⃗ delivered to an object is 

equal to the product of the force and the time interval during which the force acts: 

 ⃗   ⃗   

 

These two concepts are unified in the impulse– momentum theorem, which states that the impulse 
of a constant force delivered to an object is equal to the change in momentum of the object: 

 

 ⃗   ⃗     ⃗    ⃗    ⃗  

Solving problems with this theorem often involves estimating speeds or contact times (or both), 

leading to an average force. 

When no net external force acts on an isolated system, the total momentum of the system is 
constant. This principle is called conservation of momentum. In particular, if the isolated system 
consists of two objects undergoing a collision, the total momentum of the system is the same before 
and after the collision (Fig. 7.4). Conservation of momentum can be written mathematically for this 
case as  

   ⃗      ⃗      ⃗      ⃗   

Collision and recoil problems typically require finding unknown velocities in one or two dimensions. 

Each vector component gives an equation, and the resulting equations are solved simultaneously. 

In an inelastic collision, the momentum of the system is conserved, but kinetic energy is not. In a 

perfectly inelastic collision, the colliding objects stick together and the common final velocity is given 

by  

   
           

       
   

In an elastic collision, both the momentum and the kinetic energy of the system are conserved. 

A one - dimensional elastic collision between two objects can be solved by using the conservation of 

momentum and conservation of energy equations: 

                        

and 
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The following equation, derived from Equations (7.12) and (7.13), is usually more convenient to use 

than the original conservation of energy equation: 

         (       ) 

These equations can be solved simultaneously for the unknown velocities. Energy is not conserved in 

inelastic collisions, so such problems must be solved with Eq. (7.12) alone. 

In glancing collisions, conservation of momentum can be applied along two perpendicular directions: 

an x – axis and a y - axis. Problems can be solved by using the x – and y - components of Equation 

(7.9). Elastic two - dimensional collisions will usually require Equation (7.12) as well. (Equation (7.17) 

doesn’t apply to two dimensions.) Generally, one of the two objects is taken to be traveling along 

the x - axis, undergoing a deflection at some angle u after the collision. The final velocities and angles 

can be found with elementary trigonometry. 

The motion of extended object is described by the motion of the object’s center of mass. The x-, y -, 

and z-of an object’s center of mass are given by 

    
 

 
∑    

 

     
 

 
∑    

 

        
 

 
∑    

 

 

7.6 Conceptual Questions 

Q7.1. A batter bunts a pitched baseball, blocking the ball without swinging. (a) Can the baseball 
deliver more kinetic energy to the bat and batter than the ball carries initially? (b) Can the baseball 
deliver more momentum to the bat and batter than the ball carries initially? Explain each of your 
answers. 

Q7.2. If two objects collide and one is initially at rest, (a) is it possible for both to be at rest after the 
collision? (b) Is it possible for only one to be at rest after the collision? Explain. 

Q7.3. Two carts on an air track have the same mass and speed and are traveling towards each other. 
If they collide and stick together, find (a) the total momentum and (b) total kinetic energy of the 
system. (c) Describe a different colliding system with this same final momentum and kinetic energy. 

Q7.4. Two identical ice hockey pucks, labeled A and B, are sliding towards each other at speed v. 
Which one of the following statements is true concerning their momenta and kinetic energies? (a) 
 ⃗⃗⃗   ⃗⃗⃗  and         (b)  ⃗⃗⃗    ⃗⃗⃗  and         (c)  ⃗⃗⃗    ⃗⃗⃗  and         (d) 
 ⃗⃗⃗   ⃗⃗⃗  and          

Q7.5. A ball of clay of mass m is thrown with a speed v against a brick wall. The clay sticks to the wall 
and stops. Is the principle of conservation of momentum violated in this example? 

Q7.6. A skater is standing still on a frictionless ice rink. Her friend throws a Frisbee straight to her. In 
which of the following cases is the largest momentum transferred to the skater? (a) The skater 
catches the Frisbee and holds onto it. (b) The skater catches the Frisbee momentarily, but then 
drops it vertically downward. (c) The skater catches the Frisbee, holds it momentarily, and throws it 
back to her friend. 

Q7.7. A baseball is thrown from the outfield toward home plate. (a) True or False: Neglecting air 
resistance, the momentum of the baseball is conserved during its flight. (b) True or False: Neglecting 
air resistance, the momentum of the baseball–Earth system is conserved during the baseball’s flight. 
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Q7.8. (a) If two automobiles collide, they usually do not stick together. Does this mean the collision 
is elastic? (b) Explain why a head-on collision is likely to be more dangerous than other types of 
collisions. 

Q7.9. Your physical education teacher throws you a tennis ball at a certain velocity, and you catch it. 
You are now given the following choice: The teacher can throw you a medicine ball (which is much 
more massive than the tennis ball) with the same velocity, the same momentum, or the same kinetic 
energy as the tennis ball. Which option would you choose in order to make the easiest catch, and 
why? 

Q7.10. Two carts move in the same direction along a frictionless air track, each acted on by the same 
constant force for a time interval Dt. Cart 2 has twice the mass of cart 1. Which one of the following 
statements is true? (a) Each cart has the same change in momentum. (b) Cart 1 has the greater 
change in momentum. (c) Cart 2 has the greater change in momentum. (d) The changes in momenta 
depend on the initial velocities. 

Q7.11. For the situation described in the previous question, which cart experiences the greater 
change in kinetic energy? (a) Each cart has the same change in kinetic energy. (b) Cart 1 (c) Cart 2 (d) 
It’s impossible to tell without knowing the initial velocities 

Q7.12. At a bowling alley, two players each score a spare when their bowling balls make head-on, 
approximately elastic collisions at the same speed with identical pins. After the collisions, the pin hit 
by ball A moves much more quickly than the pin hit by ball B. Which ball has more mass? 

Q7.13. An open box slides with constant speed across the frictionless surface of a frozen lake. If 
water from a rain shower falls vertically downward into it, does the box: (a) speed up, (b) slow down, 
or (c) continue to move with constant speed? 

Q7.14. Does a larger net force exerted on an object always produce a larger change in the 
momentum of the object, compared to a smaller net force? Explain. 

Q7.15. Does a larger net force always produce a larger change in kinetic energy than a smaller net 
force? Explain. 

Q7.16. If two particles have equal momenta, are their kinetic energies equal? (a) yes, always (b) no, 
never (c) no, except when their masses are equal (d) no, except when their speeds are the same (e) 
yes, as long as they move along parallel lines. 

Q7.17. Two particles of different mass start from rest. The same net force acts on both of them as 
they move over equal distances. How do their final kinetic energies compare? (a) The particle of 
larger mass has more kinetic energy. (b) The particle of smaller mass has more kinetic energy. (c) The 
particles have equal kinetic energies. (d) Either particle might have more kinetic energy. 

Q7.18. (a) Does the center of mass of a rocket in free space accelerate? Explain. (b) Can the speed of 
a rocket exceed the exhaust speed of the fuel? Explain. 

7.7 Problems 

P7.1. Calculate the magnitude of the linear momentum for the following cases: (a) a proton with 
mass equal to 1.67 × 10-27 kg, moving with a speed of 5.00 × 106 m/s; (b) a 15.0-g bullet moving with 
a speed of 300 m/s; (c) a 75.0-kg sprinter running with a speed of 10.0 m/s; (d) the Earth (mass =5.98 
× 1024 kg) moving with an orbital speed equal to 2.98 × 104 m/s. 

P7.2. A 0.280-kg volleyball approaches a player horizontally with a speed of 15.0 m/s. The player 
strikes the ball with her fist and causes the ball to move in the opposite direction with a speed of 
22.0 m/s. (a) What impulse is delivered to the ball by the player? (b) If the player’s fist is in contact 
with the ball for 0.060 0 s, find the magnitude of the average force exerted on the player’s fist. 
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P7.3. Drops of rain fall perpendicular to the roof of a parked car during a rainstorm. The drops strike 
the roof with a speed of 12 m/s, and the mass of rain per second striking the roof is 0.035 kg/s. (a) 
Assuming the drops come to rest after striking the roof, find the average force exerted by the rain on 
the roof. (b) If hailstones having the same mass as the raindrops fall on the roof at the same rate and 
with the same speed, how would the average force on the roof compare to that found in part (a)? 

P7.4. A ball of mass 0.150 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor 
to reach a height of 0.960 m. What impulse was given to the ball by the floor?  

P7.5. V A 65.0-kg basketball player jumps vertically and leaves the floor with a velocity of 1.80 m/s 
upward. (a) What impulse does the player experience? (b) What force does the floor exert on the 
player before the jump? (c) What is the total average force exerted by the floor on the player if the 
player is in contact with the floor for 0.450 s during the jump? 

P7.6. T The front 1.20 m of a 1 400-kg car is designed as a “crumple zone” that collapses to absorb 
the shock of a collision. If a car traveling 25.0 m/s stops uniformly in 1.20 m, (a) how long does the 
collision last, (b) what is the magnitude of the average force on the car, and (c) what is the 
acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity.  

P7.7. A pitcher throws a 0.14-kg baseball toward the batter so that it crosses home plate horizontally 
and has a speed of 42 m/s just before it makes contact with the bat. The batter then hits the ball 
straight back at the pitcher with a speed of 48 m/s. Assume the ball travels along the same line 
leaving the bat as it followed before contacting the bat. (a) What is the magnitude of the impulse 
delivered by the bat to the baseball? (b) If the ball is in contact with the bat for 0.005 0 s, what is the 
magnitude of the average force exerted by the bat on the ball? (c) How does your answer to part (b) 
compare to the weight of the ball? 

P7.8. V High - speed stroboscopic photographs show that the head of a 2.00 × 102 - g golf club is 
traveling at 55.0 m/s just before it strikes a 46.0 - g golf ball at rest on a tee. After the collision, the 
club head travels (in the same direction) at 40.0 m/s. Find the speed of the golf ball just after impact. 

P7.9. A 45.0 - kg girl is standing on a 150. - kg plank. The plank, originally at rest, is free to slide on a 
frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant 
velocity of 1.50 m/s to the right relative to the plank. (a) What is her velocity relative to the surface 
of the ice? (b) What is the velocity of the plank relative to the surface of the ice? 

P7.10. This is a symbolic version of Problem 9. A girl of mass mGis standing on a plank of mass mP. 
Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins 
to walk along the plank at a constant velocity vGPto the right relative to the plank. (The subscript GP 
denotes the girl relative to plank.) (a) What is the velocity vPI of the plank relative to the surface of 
the ice? (b) What is the girl’s velocity vGI relative to the ice surface? 

P7.11. Squids are the fastest marine invertebrates, using a powerful set of muscles to take in and 
then eject water in a form of jet propulsion that can propel them to speeds of over 11.5 m/s. What 
speed would a stationary 1.50 - kg squid achieve by ejecting 0.100 kg of water (not included in the 
squid’s mass) at 3.25 m/s? Neglect other forces, including the drag force on the squid. 

P7.12. A 65.0 - kg person throws a 0.045 0 - kg snowball forward with a ground speed of 30.0 m/s. A 
second person, with a mass of 60.0 kg, catches the snowball. Both people are on skates. The first 
person is initially moving forward with a speed of 2.50 m/s, and the second person is initially at rest. 
What are the velocities of the two people after the snowball is exchanged? Disregard friction 
between the skates and the ice. 
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P7.13. An astronaut in her space suit has a total 
mass of 87.0 kg, including suit and oxygen tank. 
Her tether line loses its attachment to her 
spacecraft while she’s on a spacewalk. Initially at 
rest with respect to her spacecraft, she throws 
her 12.0 - kg oxygen tank away from her 
spacecraft with a speed of 8.00 m/s to propel 
herself back toward it (Fig. P7.1). (a) Determine 
the maximum distance she can be from the craft 
and still return within 2.00 min (the amount of 
time the air in her helmet remains breathable). 
(b) Explain in terms of Newton’s laws of motion 
why this strategy works. 

 

P 7-1 

P7.14. Gayle runs at a speed of 4.00 m/s and dives on a sled, initially at rest on the top of a 
frictionless, snow- covered hill. After she has descended a vertical distance of 5.00 m, her brother, 
who is initially at rest, hops on her back, and they continue down the hill together. What is their 
speed at the bottom of the hill if the total vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled 
has a mass of 5.00 kg, and her brother has a mass of 30.0 kg. 

P7.15. A 75.0-kg ice skater moving at 10.0 m/s crashes into a stationary skater of equal mass. After 
the collision, the two skaters move as a unit at 5.00 m/s. Suppose the average force a skater can 
experience without breaking a bone is 4 500 N. If the impact time is 0.100 s, does a bone break? 

P7.16. A railroad car of mass M moving at a speed v1 collides and couples with two coupled railroad 
cars, each of the same mass M and moving in the same direction at a speed v2. (a) What is the speed 
vfof the three coupled cars after the collision in terms of v1 and v2? (b) How much kinetic energy is 
lost in the collision? Answer in terms of M, v1 and v2. 

P7.17. Consider the ballistic pendulum device discussed in Example 7.5 and illustrated in Figure 7.8. 
(a) Determine the ratio of the momentum immediately after the collision to the momentum 
immediately before the collision. (b) Show that the ratio of the kinetic energy immediately after the 
collision to the kinetic energy immediately before the collision is m1 /(m1 + m2). 

P7.18. In a Broadway performance, an 80.0-kg actor swings from a 3.75-m-long cable that is 
horizontal when he starts. At the bottom of his arc, he picks up his 55.0-kg costar in an inelastic 
collision. What maximum height do they reach after their upward swing? 

P7.19. A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, 
the first ball moves at 4.33 m/s at an angle of 30.0° with respect to the original line of motion. (a) 
Find the velocity (magnitude and direction) of the second ball after collision. (b) Was the collision 
inelastic or elastic? 

P7.20. A typical person begins to lose consciousness if subjected to accelerations greater than about 
5g (49.0 m/s2) for more than a few seconds. Suppose a 3.00 × 104-kg manned spaceship’s engine has 
an exhaust speed of 2.50 × 103 m/s. What maximum burn rate |ΔM/Δt | could the engine reach 
before the ship’s acceleration exceeded 5g and its human occupants began to lose consciousness? 

P7.21. A spaceship’s orbital maneuver requires a speed increase of 1.20 × 103 m/s. If its engine has 
an exhaust speed of 2.50 × 103 m/s, determine the required ratio Mi/Mfof its initial mass to its final 
mass. (The difference Mi - Mf equals the mass of the ejected fuel.)  

P7.22. In research in cardiology and exercise physiology, it is often important to know the mass of 
blood pumped by a person’s heart in one stroke. This information can be obtained by means of a 
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ballistic-ardiograph. The instrument works as follows: The subject lies on a horizontal pallet floating 
on a film of air. Friction on the pallet is negligible. Initially, the momentum of the system is zero. 
When the heart beats, it expels a mass m of blood into the aorta with speed v, and the body and 
platform move in the opposite direction with speed V. The speed of the blood can be determined 
independently (e.g., by observing an ultrasound Doppler shift). Assume that the blood’s speed is 
50.0 cm/s in one typical trial. The mass of the subject plus the pallet is 54.0 kg. The pallet moves at a 
speed of 6.00 3 1025 m in 0.160 s after one heartbeat. Calculate the mass of blood that leaves the 
heart. Assume that the mass of blood is negligible compared with the total mass of the person. This 
simplified example illustrates the principle of ballistocardiography, but in practice a more 
sophisticated model of heart function is used. 

P7.23. Consider a frictionless 
track as shown in Figure P7.2. 
A block of mass m1 = 5.00 kg is 
released from A. It makes a 
head-on elastic collision at B 
with a block of mass m2= 10.0 
kg that is initially at rest. 
Calculate the maximum height 
to which m1rises after the 
collision. 

 

P 7-2 

P7.24. An unstable nucleus of mass 1.7 × 10-26 kg, initially at rest at the origin of a coordinate system, 
disintegrates into three particles. One particle, having a mass of m1 = 5.0 × 10-27  kg, moves in the 
positive y- direction with speed v1 = 6.0 × 106 m/s. Another particle, of mass m2 = 8.4 × 10-27 kg, 
moves in the positive x - direction with speed v2 = 4.0 × 106 m/s. Find the magnitude and direction of 
the velocity of the third particle. 

P7.25. The mass of the Earth is 5.97 3 1024 kg, and the mass of the Moon is 7.35 × 1022 kg. The 
distance of separation, measured between their centers, is 3.84 × 108 m. Locate the center of mass 
of the Earth–Moon system as measured from the center of the Earth. 

P7.26. Two blocks of masses m1 = 2.00 kg and m2 = 
4.00 kg are each released from rest at a height of h =  
5.00 m on a frictionless track, as shown in Figure 
P7.3, and undergo an elastic headon collision. (a) 
Determine the velocity of each block just before the 
collision. (b) Determine the velocity of each block 
immediately after the collision. (c) Determine the 
maximum heights to which m1 and m2 rise after the 
collision. 

P 7-3 

P7.27. A wooden block of mass M rests on a table over a large hole 
as in Figure P7.4. A bullet of mass m with an initial velocity viis fired 
upward into the bottom of the block and remains in the block after 
the collision. The block and bullet rise to a maximum height of h. (a) 
Describe how you would find the initial velocity of the bullet using 
ideas you have learned in this topic. (b) Find an expression for the 
initial velocity of the bullet. 

P7.28. V A 1.25-kg wooden block rests on a table over a large hole as 
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in Figure P7.4. A 5.00-g bullet with an initial velocity vi is fired 
upward into the bottom of the block and remains in the block after 
the collision. The block and bullet rise to a maximum height of 22.0 
cm. (a) Describe how you would find the initial velocity of the bullet 
using ideas you have learned in this topic. (b) Calculate the initial 
velocity of the bullet from the information provided. 

P 7-4 Problems 7.27 and 28 

P7.29. Two objects of masses m and 3m are moving toward each other along the x-axis with the 
same initial speed v0. The object with mass m is traveling to the left, and the object with mass 3m is 
traveling to the right. They undergo an elastic glancing collision such that m is moving downward 
after the collision at right angles from its initial direction. (a) Find the final speeds of the two objects. 
(b) What is the angle   at which the object with mass 3m is scattered? 
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8 Fluid mechanics 

 

Learning Outcomes 

After completing this chapter, students are expected to: 

 Define density of static fluids 

 Define pressure of static fluids 

 Explain relation between pressure and depth 

 Apply to hydraulic lift 

 Explain the principle of pressure measurement 

 

Introduction  

There are four known states of matter: solids, liquids, gases, and plasmas. In the Universe at large, 
plasmas—systems of charged particles interacting electromagnetically—are the most common. In 
our environment on Earth, solids, liquids, and gases predominate. 

An understanding of the fundamental properties of these different states of matter is important in 
all the sciences, in engineering, and in medicine. Forces put stresses on solids, and stresses can 
strain, deform, and break those solids, whether they are steel beams or bones. 

Fluids under pressure can perform work or carry nutrients and essential solutes, like the blood 
flowing through our arteries and veins. Flowing gases cause pressure differences that can lift a 
massive cargo plane or the roof off a house in a hurricane. High-temperature plasmas created in 
fusion reactors may someday allow humankind to harness the energy source of the Sun. 

The study of any one of these states of matter is itself a vast discipline. Here, we’ll introduce basic 
properties of solids and liquids, the latter including some properties of gases. 

8.1 Density and Pressure in Static Fluids 

8.1.1 Density 

The density    of an object having uniform composition is its mass M divided by its volume V: 

  
 

 
 

8.1 

SI unit: kilogram per meter cubed (kg/m3) 

The specific gravity of a substance is the ratio of its density to the density of water at 4°C, which is 
    ×     kg/m3. (The size of the kilogram was originally defined to make the density of water 
    ×     kg/m3 at 4°C.) By definition, specific gravity is a dimensionless quantity. For example, if 
the specific gravity of a substance is 3.0, its density is 3.0 (    ×     kg/m3)      ×     kg/m3. 
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8.1.2 Pressure  

If F is the magnitude of a force exerted perpendicular to a given surface of area A, then the average 
pressure P is the force divided by the area: 

  
 

 
 8.2 

SI unit: pascal (Pa = N/m2) 

Pressure can change from point to point, which is why the pressure in the above equation is called 
an average. Because pressure is defined as force per unit area, it has units of Pascal (newton per 
square meter). 

 

Example 8.1: Pressure and weight of water 

GOAL: Relate density, pressure, and weight. 

(a) Calculate the weight of a cylindrical column of water 
with height h = 40.0 m and radius r = 1.00 m.  

(b) (b) Calculate the force exerted by air on a disk of 
radius 1.00 m at the water’s surface. (c) What 
pressure at a depth of 40.0 m supports the water 
column? 

Solution:  

For part (a), calculate the volume and multiply by the density 
to get the mass of water, then multiply the mass by g to get 
the weight. Part (b) requires substitution into the definition of 
pressure. Adding the results of parts (a) and (b) and dividing 
by the area gives the pressure of water at the bottom of the 
column. 

 

8.1.3 Variation of pressure with depth 

When a fluid is at rest in a container, all portions of the fluid must be in static equilibrium—at rest 
with respect to the observer. Furthermore, all points at the same 
depth must be at the same pressure. 

Next, let’s examine the fluid contained within the volume indicated 
by the darker region in the figure. This region has cross-sectional 
area A and extends from position y1 to position y2 below the 
surface of the liquid. Three external forces act on this volume of 
fluid: the force of gravity, Mg; the upward force P2A exerted by the 
liquid below it; and a downward force P1A exerted by the fluid 
above it. Because the given volume of fluid is in equilibrium, these 
forces must add to zero, so we get 

             8.3 

From the definition of density, we have 

               8.4 
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Substituting Equation 8.4 into Equation 8.3, canceling the area A, and rearranging terms, we get 

                 8.5 

Atmospheric pressure is also caused by a piling up of fluid—in this case, the fluid is the gas of the 
atmosphere. The weight of all the air from sea level to the edge of space results in an atmospheric 

pressure of        3 ×     Pa at sea level. This result can be adapted to find the pressure P at 
any depth                  below the surface of the water: 

         8.6 

According to Equation 8.6, the pressure P at a depth h below the surface of a liquid open to the 
atmosphere is greater than atmospheric gh. Moreover, the pressure isn’t 
affected by the shape of the vessel. Equation 8.6 is often called the equation of hydrostatic 
equilibrium. 

8.1.3.1 Application: Hydraulic lift 

An important application of Pascal’s principle is 
the hydraulic press (see figure). A downward force 
F1 is applied to a small piston of area A1. The 
pressure is transmitted through a fluid to a larger 
piston of area A2. As the pistons move and the 
fluids in the left and right cylinders change their 
relative heights, there are slight differences in the 
pressures at the input and output pistons. 
Neglecting these small differences, the fluid 
pressure on each of the pistons may be taken to 
be the same; P1 = P2. From the definition of 
pressure, it then follows that F1/A1 = F2/A2. 
Therefore, the magnitude of the force F2 is larger 
than the magnitude of F1 by the factor A2/A1. That’s why a large load, such as a car, can be moved on 
the large piston by a much smaller force on the smaller piston. Hydraulic brakes, car lifts, hydraulic 
jacks, forklifts, and other machines make use of this principle. 

Example 8.2: Oil and water 

GOAL Calculate pressures created by layers of different 
fluids. 

In a huge oil tanker, salt water has flooded an oil tank to a 
depth of h2 = 5.00 m. On top of the water is a layer of oil h1 = 
8.00 m deep, as in the cross-sectional view of the tank in 
Figure. The oil has a density of 0.700 g/cm3. Find the 
pressure at the bottom of the tank. (Take 1 025 kg/m3 as the 
density of salt water.)  

Solution:  

Equation 8.6 must be used twice. First, use it to calculate the 
pressure P1 at the bottom of the oil layer. Then use this 
pressure in place of P0 in Equation 8.6 and calculate the 
pressure Pbot at the bottom of the water layer. 
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Example 8.3: Car lift 

GOAL Apply Pascal’s principle to a car lifts, and shows that the input work is the same as the 
output work. 

In a car lift used in a service station, compressed air exerts a force on a small piston of circular 
cross section having a radius of r1 = 5.00 cm. This pressure is transmitted by an incompressible 
liquid to a second piston of radius r2 = 15.0 cm.  

(a) What force must the compressed air exert on the small piston in order to lift a car 
weighing 13 300 N? Neglect the weights of the pistons.  

(b) What air pressure will produce a force of that magnitude?  

(c) Show that the work done by the input and output pistons is the same. 

Solution: 

Substitute into Pascal’s principle in part (a), while recognizing that the magnitude of the output 
force, F2, must be equal to the car’s weight in order to support it. Use the definition of pressure in 
part (b). In part (c), use W = Fx to find the ratio W1/W2, showing that it must equal 1. This requires 
combining Pascal’s principle with the fact that the input and output pistons move through the 
same volume. 

 

8.1.4 Pressure measurements 

A simple device for measuring pressure is the open-tube manometer. 
One end of a U-shaped tube containing a liquid is open to the 
atmosphere, and the other end is connected to a system of unknown 
pressure P. The pressure at point B equals       , where   is the 
density of the fluid. The pressure at B, however, equals the pressure 
at A, which is also the unknown pressure P. We conclude that 
        . 

The pressure P is called the absolute pressure, and       is called 
the gauge pressure. If P in the system is greater than atmospheric 
pressure, h is positive. If P is less than atmospheric pressure (a partial vacuum), 
h is negative, meaning that the right-hand column is lower than the left-hand 
column. 

Another instrument used to measure pressure is the barometer, invented by 
Evangelista Torricelli (1608–1647). A long tube closed at one end is filled with 
mercury and then inverted into a dish of mercury. The closed end of the tube is 
nearly a vacuum, so its pressure can be taken to be zero. It follows that 
         where   is the density of mercury and h is the height of the mercury 
column. Note that the barometer measures the pressure of the atmosphere, 
whereas the manometer measures pressure in an enclosed fluid. 
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8.2 Buoyant Forces, Archimedes’ Principle 

Learning Outcomes 

After completing this section, students are expected to: 

 Explain Archimedes’ principle 

 Explain and evaluate buoyant force 

 

A fundamental principle affecting objects submerged in fluids was discovered by Greek 
mathematician and natural philosopher Archimedes. Archimedes’ principle can be stated as follows: 

Any object completely or partially submerged in a fluid is buoyed up by a force with magnitude equal 
to the weight of the fluid displaced by the object. 

In the figure, the cannon ball is pressed on all sides by the surrounding fluid. Arrows indicate the 
forces arising from the pressure. Because pressure increases 
with depth, the arrows on the underside are larger than those 
on top. 

Adding them all up, the horizontal components cancel, but there 
is a net force upward. This force, due to differences in pressure, 
is the buoyant force B. The sphere of water neither rises nor 
falls, so the vector sum of the buoyant force and the force of 
gravity on the sphere of fluid must be zero, and it follows that B 
5 Mg, where M is the mass of the fluid. The buoyant force, 
therefore, is equal in magnitude to the weight of the displaced 
fluid. 

Archimedes’ principle can also be obtained from Equation 8.3, 
relating pressure and depth, using figure in section 8.1.3. Horizontal forces from the pressure cancel, 
but in the vertical direction P2A acts upward on the bottom of the block of fluid, and P1A and the 
gravity force on the fluid, Mg, act downward, giving 

             8.7a 

where the buoyancy force has been identified as the result of differences in pressure and is equal in 
magnitude to the weight of the displaced fluid. This buoyancy force remains the same regardless of 
the material occupying the volume in question because it’s due to the surrounding fluid. Using the 
definition of density, Equation 8.7a becomes 

                8.7b 

where        is the density of the fluid and        is the volume of the displaced fluid. 
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Example 8.4: A red-tag special on crowns 

GOAL Apply Archimedes’ principle to a submerged object. 

A bargain hunter purchases a “gold” crown at a flea market. 
After she gets home, she hangs it from a scale and finds its 
weight to be 7.84 N. She then weighs the crown while it is 
immersed in water, as in the figure, and now the scale reads 
6.86 N. Is the crown made of pure gold? 

STRATEGY The goal is to find the density of the crown and 
compare it to the density of gold. We already have the 
weight of the crown in air, so we can get the mass by 
dividing by the acceleration of gravity. If we can find the 
volume of the crown, we can obtain the desired density by 
dividing the mass by this volume. 

 

 

Example 8.5: Floating down the river 

GOAL Apply Archimedes’ principle to a partially submerged object. 

A raft is constructed of wood having a density of 6.00 × 102 kg/m3. Its surface area is 5.70 m2, and 
its volume is 0.60 m3. When the raft is placed in fresh water, to what depth h is the bottom of the 
raft submerged?  

If the raft is placed in salt water, which has a density greater than fresh water, would the value of 
h (a) decrease, (b) increase, or (c) not change? 

Solution: 

There are two forces acting on the raft: the buoyant force of magnitude B, acting upward, and the 
force of gravity, acting downward. Because the raft is in equilibrium, the sum of these forces is 
zero. The buoyant force depends on the submerged volume          . Set up Newton’s second 
law and solve for h, the depth reached by the bottom of the raft. 

 

8.3 Moving Fluids and Bernoulli’s Equation  

Learning Outcomes 

After completing this section, students are expected to: 

 Define laminar and turbulent flow 

 Explain and apply the equation of continuity 

 Explain and apply Bernoulli’s equation 

 Calculate the speed of a fluid  

When a fluid is in motion, its flow can be characterized in one of two ways. The flow is said to be 
streamline, or laminar, if every particle that passes a particular point moves along exactly the same 
smooth path followed by previous particles passing that point. 
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In contrast, the flow of a fluid becomes irregular, or turbulent, above a certain velocity or under any 
conditions that can cause abrupt changes in velocity. 

8.3.1 Equation of continuity 

Let us consider a fluid flowing through a pipe of non-uniform 
size. The particles in the fluid move along the streamlines in 
steady- t, the fluid entering 
the bottom end of the pipe moves a distance         , 
where v1 is the speed of the fluid at that location. If A1 is the 
cross-sectional area in this region, then the mass contained in 
the bottom blue region is                    , where 
is the density of the fluid. Similarly, the fluid that moves out of 

t has a 
mass of               However, because mass is conserved 
and because the flow is steady, the mass that flows into the 
bottom of the pipe through A1 t must equal the mass that flows out through A2 in the 
same interval. Therefore,         , or 

          8.8 

This expression is called the equation of continuity. 

Example 8.6: Niagara Falls 

GOAL Apply the equation of continuity. 

Each second, 5 525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls portion of 
Niagara Falls. The water is approximately 2 m deep as it reaches the cliff. Estimate its speed at that 
instant. By what factor would the range be changed if the flow rate were doubled? 

Solution: 

This is an estimate, so only one significant figure will be retained in the answer. The volume flow 
rate is given, and, according to the equation of continuity, is a constant equal to Av. Find the cross-
sectional area, substitute, and solve for the speed. 

8.3.2 Bernoulli’s equation 

In deriving Bernoulli’s equation, we again assume the fluid is 
incompressible, non-viscous, and flows in a non-turbulent, 
steady-state manner. Consider the flow through a non-uniform 
pipe in the time   , as in the figure. The force on the lower end 
of the fluid is P1A1, where P1 is the pressure at the lower end. 
The work done on the lower end of the fluid by the fluid behind 
it is 

                      

where V is the volume of the lower blue region in the figure. In 
a similar manner, the work done on the fluid on the upper 
portion in the time Δt is 
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The volume is the same because, by the equation of continuity, the volume of fluid that passes 
through A1 in the time Δt equals the volume that passes through A2 in the same interval. The work 
W2 is negative because the force on the fluid at the top is opposite its displacement. The net work 
done by these forces in the time Δt is 

                

Part of this work goes into changing the fluid’s kinetic energy, and part goes into changing the 
gravitational potential energy of the fluid–Earth system. If m is the mass of the fluid passing through 
the pipe in the time interval Δt, then the change in kinetic energy of the volume of fluid is 

    
 

 
   

  
 

 
   

  
 

The change in the gravitational potential energy is 

               

Because the net work done by the fluid on the segment of fluid shown changes the kinetic energy 
and the potential energy of the latter, we have 

                 

Substituting expressions for each of the terms gives 

        
 

 
   

  
 

 
   

      

      

 

If we divide each term by V and recall that  = m/V, this expression becomes 

      
 

 
   

  
 

 
   

            
 

Rearrange the terms as follows: 

   
 

 
   

          
 

 
   

       8.9 

This is Bernoulli’s equation, often expressed as 

  
 

 
                 8.10 

Bernoulli’s equation states that the sum of the pressure P, the kinetic energy per unit volume, 
1/2ρv2, and the potential energy per unit volume, ρgy, has the same value at all points along a 
streamline. 
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Example 8.7: Shoot-out at the old water tank 

GOAL Apply Bernoulli’s equation to find the speed of a fluid. 

A nearsighted sheriff fires at a cattle rustler with his trusty six-shooter. Fortunately for the rustler, 
the bullet misses him and penetrates the town water tank, causing a leak.  

(a) If the top of the tank is open to the atmosphere, determine the speed at which the water 
leaves the hole when the water level is 0.500 m above the hole.  

(b) Where does the stream hit the ground if the hole is 3.00 m above the ground?  

(c) As time passes, what happens to the speed of the water leaving the hole?  

(d) Suppose, in a similar situation, the water hits the ground 4.20 m from the hole in the tank. 
If the hole is 2.00 m above the ground, how far above the hole is the water level 

Solution: 

(a) Assume the tank’s cross-sectional area is large 
compared to the hole’s (A2 >> A1), so the water 
level drops very slowly and v2 ≈ 0. Apply 

Bernoulli’s equation to points ➀ and ➁ in the 
figure, noting that P1 equals atmospheric 
pressure P0 at the hole and is approximately the 
same at the top of the water tank. Part (b) can be 
solved with kinematics, just as if the water were a 
ball thrown horizontally. 

 

 

Example 8.8: Fluid flow in a pipe 

GOAL Solve a problem combining Bernoulli’s equation and the 
equation of continuity. 

 

A large pipe with a cross-sectional area of 1.00 m2 descends 
5.00 m and narrows to 0.500 m2, where it terminates in a 

valve at point ➀ (Figure). If the pressure at point ➁ is 
atmospheric pressure, and the valve is opened wide and 
water allowed to flow freely, find the speed of the water 
leaving the pipe. 

Solution 

The equation of continuity, together with Bernoulli’s 
equation, constitute two equations in two unknowns: the 
speeds v1 and v2. Eliminate v2 from Bernoulli’s equation with 
the equation of continuity, and solve for v1. 

 

 

 

 

 

 

 

Example 8.9: Lift on airfoil 
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GOAL Use Bernoulli’s equation to calculate the lift on an airplane wing. 

An airplane has wings, each with area 4.00 m2, designed so that air flows over the top of the wing 
at 245 m/s and underneath the wing at 222 m/s. (a) Find the mass of the airplane such that the lift 
on the plane will support its weight, assuming the force from the pressure difference across the 
wings is directed straight upward. (b) Why is the maximum lift affected by increasing altitude? (c) 
Approximately what size wings would an aircraft need on Mars if its engine generates the same 
differences in speed as in the example and the total mass of the craft is 400 kg? The density of air 
on the surface of Mars is approximately one percent Earth’s density at sea level, and the 
acceleration of gravity on the surface of Mars is about 3.8 m/s2. 

Solution: 

This problem can be solved by substituting values into Bernoulli’s equation to find the pressure 
difference between the air under the wing and the air over the wing, followed by applying 
Newton’s second law to find the mass the airplane can lift. 

8.4 Properties of Bulk Matter/Stress, Strain/ 

Learning Outcomes 

After completing this section, students are expected to: 

 Define stress and strain and their relationship 

 Define Young’s modulus, shear modulus and bulk modulus 

 

The elastic properties of solids are discussed in terms of stress and strain. Stress is the force per unit 
area causing a deformation; strain is a measure of the amount of the deformation. For sufficiently 
small stresses, stress is proportional to strain, with the constant of proportionality depending on the 
material being deformed and on the nature of the deformation. We call this proportionality constant 
the elastic modulus: 

stress = elastic modulus × strain 8.11 

8.4.1 Young’s Modulus: elasticity in Length 

Consider a long bar of cross-sectional area A and length L0, 
clamped at one end. When an external force F is applied 
along the bar, perpendicular to the cross section, internal 
forces in the bar resist the distortion (“stretching”) that F 
tends to produce. Nevertheless, the bar attains an equilibrium 
in which (1) its length is greater than L0 and (2) the external 
force is balanced by internal forces.  

We define the tensile stress as the ratio of the magnitude of 
the external force F to the cross-sectional area A. The SI unit 
of stress is the newton per square meter (N/m2), called the 
pascal (Pa). The tensile strain in this case is defined as the ratio o L to the 
original length L0 and is therefore a dimensionless quantity. Using Equation 8.11, we can write an 
equation relating tensile stress to tensile strain: 
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 8.12 

Y is the constant of proportionality, called Young’s modulus. 

 

8.4.2 Shear Modulus: elasticity of Shape 

Another type of deformation occurs when an object is 
subjected to a force F parallel to one of its faces while the 
opposite face is held fixed by a second force. If the object 
is originally a rectangular block, such a parallel force 
results in a shape with the cross section of a 
parallelogram. This kind of stress is called a shear stress. 
There is no change in volume with this kind of 
deformation. 

We define the shear stress as F/A, the ratio of the magnitude of the parallel force to the area A of 
x/h, x is the horizontal distance the 

sheared face moves and h is the height of the object. The shear stress is related to the shear strain 
according to 

 

 
  

  

 
 

8.13 

where S is the shear modulus of the material, with units of Pascal. 

 

8.4.3 8.4.3 Bulk Modulus: volume elasticity 

The bulk modulus characterizes the response of a substance to 
uniform squeezing. Suppose the external forces acting on an 
object are all perpendicular to the surface on which the force 
acts and are distributed uniformly over the surface of the object. 
This occurs when an object is immersed in a fluid. An object 
subject to this type of deformation undergoes a change in 

P is defined 
as the ratio of the change in the magnitude of the applied force 

F to the surface area A. From the definition of pressure in 
P is also simply a change in pressure. The volume 

V divided by the original 
volume V. Again using Equation 8.11, we can relate a volume 
stress to a volume strain by the formula 

     
  

 
 8.14 

Note that a negative sign is included in this defining equation so that B is always positive. An 
P V) and vice versa. 
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Example 8.10: Built to last 

GOAL Calculate a compression due to tensile stress and maximum load. 

A vertical steel beam in a building supports a load of 6.0 × 104 N. (a) If the length of the beam is 4.0 
m and its cross-sectional area is 8.0 × 10-3 m2, find the distance the beam is compressed along its 
length. (b) What maximum load in newton could the steel beam support before failing?  

Solution: 

 L, followed by 
substitution of known values. For part (b), set the compressive stress equal to the ultimate strength 
of steel from the Table.  Solve for the magnitude of the force, which is the total weight the structure 
can support. 

 

Example 8.11: American football injuries 

GOAL Obtain an estimate of shear stress. 

A defensive lineman of mass M = 125 kg makes a flying tackle at vi = 4.00 m/s on a stationary 
quarterback of mass m = 85.0 kg, and the lineman’s helmet makes solid contact with the 
quarterback’s femur. (a) What is the speed vf of the two athletes immediately after contact? Assume 
a linear perfectly inelastic collision. (b) If the collision lasts for 0.100 s, estimate the average force 
exerted on the quarterback’s femur. (c) If the cross-sectional area of the quarterback’s femur is 
equal to 5.00 × 10-4 m2, calculate the shear stress exerted on the bone in the collision. 

Solution: 

 The solution proceeds in three well-defined steps. In part (a), use conservation of linear momentum 
to calculate the final speed of the system consisting of the quarterback and the lineman. Second, the 
speed found in part (a) can be used in the impulse-momentum theorem to obtain an estimate of the 
average force exerted on the femur. Third, dividing the average force by the cross-sectional area of 
the femur gives the desired estimate of the shear stress. 

 

Example 8.12: Lead ballast overboard 

GOAL Apply the concepts of bulk stress and strain. 

Ships and sailing vessels often carry lead ballast in various forms, such as bricks, to keep the ship 
properly oriented and upright in the water. Suppose a ship takes on cargo and the crew jettisons a 
total of 0.500 m3 of lead ballast into water 2.00 km deep. Calculate (a) the change in the pressure at 
that depth and (b) the change in volume of the lead upon reaching the bottom. Take the density of 
sea water to be 1.025 × 103 kg/m3, and take the bulk modulus of lead to be 4.2 × 1010 Pa. 

Solution: 

 The pressure difference between the surface and a depth of 2.00 km is due to the weight of the 
water column. Calculate the weight of water in a column with cross section of 1.00 m2. That number 
in newton will be the same magnitude as the pressure difference in pascal. Substitute the pressure 
change into the bulk stress and strain equation to obtain the change in volume of the lead. 

 



General Physics Module Phys 1011 AAU 

  

Fluid mechanics 215 
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8.5 Chapter Summary 

Density and Pressure of Static Fluids 

The density ρ of a substance of uniform composition is its mass per unit volume—kilograms per 
cubic meter (kg/m3) in the SI system: 

  
 

 
 

The pressure P in a fluid, measured in Pascal (Pa), is the force per unit area that the fluid exerts on 
an object immersed in it: 

  
 

 
 

The pressure in an incompressible fluid varies with depth h according to the expression 

         

where P0 is atmospheric pressure (    3 ×     Pa) and r is the density of the fluid. 

Pascal’s principle states that when pressure is applied to an enclosed fluid, the pressure is 
transmitted undiminished to every point of the fluid and to the walls of the containing vessel. 

 

Buoyant Forces and Archimedes’ Principle 

When an object is partially or fully submerged in a fluid, the fluid exerts an upward force, called the 
buoyant force, on the object. This force is, in fact, due to the net difference in pressure between the 
top and bottom of the object. It can be shown that the magnitude of the buoyant force B is equal to 
the weight of the fluid displaced by the object, or  

                

The above equation is known as Archimedes’ principle. 

 

Moving Fluids and Bernoulli’s Equation 

Certain aspects of a fluid in motion can be understood by assuming the fluid is non-viscous and 
incompressible and that its motion is in a steady state with no turbulence: 

1. The flow rate through the pipe is a constant, which is equivalent to stating that the product 
of the cross-sectional area A and the speed v at any point is constant. 

At any two points, therefore, we have 

          

This relation is referred to as the equation of continuity. 

2. The sum of the pressure, the kinetic energy per unit volume, and the potential energy per 
unit volume is the same at any two points along a streamline: 

   
 

 
   

          
 

 
   

       

This equation is known as Bernoulli’s equation. Solving problems with Bernoulli’s equation is similar 
to solving problems with the work–energy theorem, whereby two points are chosen, one point 
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where a quantity is unknown and another where all quantities are known. The above equation is 
then solved for the unknown quantity. 

 

Properties of Bulk Matter/Stress, Strain/ 

The elastic properties of a solid can be described using the concepts of stress and strain. Stress is 
related to the force per unit area producing a deformation; strain is a measure of the amount of 
deformation. Stress is proportional to strain, and the constant of proportionality is the elastic 
modulus: 

                      ×        

 

Three common types of deformation are (1) the resistance of a solid to elongation or compression, 
characterized by Young’s modulus Y; (2) the resistance to displacement of the faces of a solid sliding 
past each other, characterized by the shear modulus S; and (3) the resistance of a solid or liquid to a 
change in volume, characterized by the bulk modulus B.  

All three types of deformation obey laws similar to Hooke’s law for springs. Solving problems is 
usually a matter of identifying the given physical variables and solving for the unknown variable. 

 

8.6 Conceptual Questions 

 

1. The three containers are filled with 
water to the same level. Rank the 
pressures at the bottom of the 
containers (choose one): (a) PA > PB > 
PC (b) PA > PB = PC (c) PA = PB > PC (d) PA 
< PB < PC (e) PA = PB = PC 

 

2. The density of air is 1.3 kg/m3 at sea level. From your knowledge of air pressure at ground 
level, estimate the height of the atmosphere. As a simplifying assumption, take the 
atmosphere to be of uniform density up to some height, after which the density rapidly falls 
to zero. (In reality, the density of the atmosphere decreases as we go up.) 

 

3. Figure shows aerial views from directly above two dams. 
Both dams are equally long (the vertical dimension in the 
diagram) and equally deep (into the page in the diagram). 
The dam on the left holds back a very large lake, while the 
dam on the right holds back a narrow river. Which dam 
has to be built more strongly? 

 

4. Equal volumes of two fluids are 
added to the U-shaped pipe as 
shown in Figure. The pipe is open at 
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both ends and the fluids come to equilibrium without mixing. (a) Which fluid has the higher 
density, fluid A or fluid B? (b) What is the ratio       of the fluid densities? 

5. Water flows along a streamline down a river of constant width. Over a short distance the 
water slows from speed v to v/3. Which of the following can you correctly conclude about 
the river’s depth? (a) It became deeper by a factor of 3. (b) It became shallower by a factor 
of 3. (c) It became deeper by a factor of 32. (d) It became shallower by a factor of 32. 

6. The water supply for a city is often provided from reservoirs built on high ground. Water 
flows from the reservoir, through pipes, and into your home when you turn the tap on your 
faucet. Why is the water flow more rapid out of a faucet on the first floor of a building than 
in an apartment on a higher floor? 

7. An ice cube is placed in a glass of water. What happens to the level of the water as the ice 
melts? 

8. Tornadoes and hurricanes often lift the roofs of houses. Use the Bernoulli Effect to explain 
why. Why should you keep your windows open under these conditions? 

9. A person in a boat floating in a small pond throws an anchor overboard. What happens to 
the level of the pond? (a) It rises. (b) It falls. (c) It remains the same. 

 

8.7 Exercises 

1. A giant oil storage facility contains oil to a depth of 40.0 m. How does the pressure at the 
bottom of the tank compare to the pressure at a depth of 40.0 m in water? Explain. 

2. A large rectangular tub is filled to a depth of 2.60 m with olive oil, which has density 915 
kg/m3. If the tub has length 5.00 m and width 3.00 m, calculate (a) the weight of the olive oil, 
(b) the force of air pressure on the surface of the oil, and (c) the pressure exerted upward by 
the bottom of the tub. 

3. An airplane takes off at sea level and climbs to a height of 425 m. Estimate the net outward 
force on a passenger’s eardrum assuming the density of air is approximately constant at 1.3 
kg/m3 and that the inner ear pressure hasn’t been equalized. 

4. A hydraulic lift has pistons with diameters 8.00 cm and 36.0 cm, respectively. If a force of 
825 N is exerted at the input piston, what maximum mass can be lifted by the output piston? 

5. Blood pressure is normally measured with the cuff of the sphygmomanometer around the 
arm. Suppose the blood pressure is measured with the cuff around the calf of the leg of a 
standing person. Would the reading of the blood pressure be (a) the same here as it is for 
the arm, (b) greater than it is for the arm, or (c) less than it is for the arm? 

6. Atmospheric pressure varies from day to day. The level of a floating ship on a high-pressure 
day is (a) higher, (b) lower, or (c) no different than on a low-pressure day. 

7. The density of lead is greater than iron, and both metals are denser than water. Is the 
buoyant force on a solid lead object (a) greater than, (b) equal to, or (c) less than the 
buoyant force acting on a solid iron object of the same dimensions? 

8. Calculate how much of an iceberg is beneath the surface of the ocean, given that the density 
of ice is 917 kg/m3 and salt water has density 1 025 kg/m3. 



General Physics Module Phys 1011 AAU 

  

Fluid mechanics 219 

 

9. Water flowing in a horizontal pipe is at a pressure of 1.40 × 105 Pa at a point where its cross-
sectional area is 1.00 m2. When the pipe narrows to 0.400 m2, the pressure drops to 1.16 × 
105 Pa. Find the water’s speed (a) in the wider pipe and (b) in the narrower pipe. 

10. Rank by the amount of fractional increase in length under increasing tensile stress, from 
smallest to largest: rubber, tungsten, steel, aluminum. 

11. A cable used to lift heavy materials like steel I-beams must be strong enough to resist 
breaking even under a load of 1.0 × 106 N. For safety, the cable must support twice that load. 
(a) What cross-sectional area should the cable have if it’s to be made of steel? (b) By how 
much will an 8.0-m length of this cable stretch when subject to the 1.0 × 106 N load? 

12. Rank the following substances in order of the fractional change in volume in response to 
increasing pressure, from smallest to largest: copper, steel, water, mercury. 

13. (a) By what percentage does the volume of a ball of water shrink at that same depth? (b) 
What is the ratio of the new radius to the initial radius? 

 

8.8 Problems  

Density and Pressure in Static Fluids 

1. The weight of Earth’s atmosphere exerts an average pressure of 1.01×105 Pa on the ground 
at sea level. Use the definition of pressure to estimate the weight of Earth’s atmosphere by 

approximating Earth as a sphere of radius RE = 6.38 × 106 m and surface area   4   
 . 

2. The four tires of an automobile are inflated to a gauge pressure of 2.0 × 105 Pa. Each tire has 
an area of 0.024 m2 in contact with the ground. Determine the weight of the automobile. 

3. A normal blood pressure reading is less than 120/80 where both numbers are gauge 
pressures measured in millimeters of mercury (mmHg). What are the (a) absolute and (b) 
gauge pressures in pascals at the base of a 0.120 m column of mercury? 

4. A collapsible plastic bag (see figure) contains a glucose solution. If the 
average gauge pressure in the vein is 1.33 × 103 Pa, what must be the 
minimum height h of the bag to infuse glucose into the vein? Assume the 
specific gravity of the solution is 1.02. 

5. A hydraulic jack has an input piston of area 0.050 m2 and an output piston of 
area 0.70 m2. How much force on the input piston is required to lift a car 
weighing 1.2 x 104 N? 

6. A container is filled to a depth of 20.0 cm with water. On top of the water floats a 30.0-cm-
thick layer of oil with specific gravity 0.700. What is the absolute pressure at the bottom of 
the container? 

 

Buoyant Forces and Archimedes’ Principle 

1. A table-tennis ball has a diameter of 3.80 cm and average density of 0.084 g/cm3. What 
force is required to hold it completely submerged under water? 
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2. A 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it 
as a raft. The Styrofoam has dimensions 2.00 m x 2.00 m x 0.090 m. The bottom 0.024 m of 
the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and 
raft. (b) Write Newton’s second law for the system in one dimension, using B for buoyancy, 
w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate 
the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the 
value of B and the weight w of the survivor, calculate the weight wr of the Styrofoam. (e) 
What is the density of the Styrofoam? (f ) What is the maximum buoyant force, 
corresponding to the raft being submerged up to its top surface? (g) What total mass of 
survivors can the raft support? 

3. A hot-air balloon consists of a basket hanging beneath a large envelope filled with hot air. A 
typical hot-air balloon has a total mass of 545 kg, including passengers in its basket, and 
holds 2.55 × 103 m3 of hot air in its envelope. If the ambient air density is 1.25 kg/m3, 
determine the density of hot air inside the envelope when the balloon is neutrally buoyant. 
Neglect the volume of air displaced by the basket and passengers. 

4. A cube of wood having an edge dimension of 20.0 cm and a 
density of 650. kg/m3 floats on water. (a) What is the 
distance from the horizontal top surface of the cube to the 
water level? (b) What mass of lead should be placed on the 
cube so that the top of the cube will be just level with the 
water surface? 

5. The gravitational force exerted on a solid object is 5.00 N as 
measured when the object is suspended from a spring scale 
as in the figure. When the suspended object is submerged in water, the scale reads 3.50 N 
(see figure). Find the density of the object. 

6. A sample of an unknown material appears to weigh 300. N in air and 200. N when immersed 
in alcohol of specific gravity 0.700. What are (a) the volume and (b) the density of the 
material? 

 

Moving Fluids and Bernoulli’s Equation 

1. A horizontal pipe narrows from a radius of 0.250 m to 0.100 m. If the speed of the water in 
the pipe is 1.00 m/s in the larger radius pipe, what is the speed in the smaller pipe? 

2. A hypodermic syringe contains a medicine with the density of water. The barrel of the 
syringe has a cross-sectional area of 2.50 × 10-5 m2. In the absence of a force on the plunger, 
the pressure everywhere is 1.00 atm. A force F of magnitude 2.00 N is exerted on the 
plunger, making medicine squirt 
from the needle. Determine the 
medicine’s flow speed through the 
needle. Assume the pressure in the 
needle remains equal to 1.00 atm 
and that the syringe is horizontal. 

3. A jet airplane in level flight has a mass of 8.66 × 104 kg, 
and the two wings have an estimated total area of 90.0 
m2. (a) What is the pressure difference between the 
lower and upper surfaces of the wings? (b) If the speed 
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of air under the wings is 225 m/s, what is the speed of the air over the wings? Assume air 
has a density of 1.29 kg/m3. (c) Explain why all aircraft have a “ceiling,” a maximum 
operational altitude. 

4. The inside diameters of the larger portions of the horizontal pipe depicted in the figure are 
2.50 cm. Water flows to the right at a rate of 1.80 × 10-4 m3/s. Determine the inside diameter 
of the constriction. 

5. A man attaches a divider to an outdoor faucet so that water 
flows through a single pipe of radius 9.00 mm into two pipes, 
each with a radius of 6.00 mm. If water flows through the 
single pipe at 1.25 m/s, calculate the speed of the water in the 
narrower pipes. 

6. A jet of water squirts out horizontally from a hole near the 
bottom of the tank shown in the figure. If the hole has a 
diameter of 3.50 mm, what is the height h of the water level in 
the tank? 

 

Properties of Bulk Matter/Stress, Strain/ 

1. A 200.- kg load is hung on a wire of length 4.00 m, cross-sectional area 0.200 × 10–4 m2, and 
Young’s modulus 8.00 × 1010 N/m2. What is its increase in length? 

2. Artificial diamonds can be made using high-pressure, high temperature presses. Suppose an 
artificial diamond of volume 1.00 × 10-6 m3 is formed under a pressure of 5.00 GPa. Find the 
change in its volume when it is released from the press and brought to atmospheric 
pressure. Take the diamond’s bulk modulus to be B = 194 GPa. 

3. Bone has a Young’s modulus of 18 × 109 Pa. Under compression, it can withstand a stress of 
about 160 × 106 Pa before breaking. Assume that a femur (thigh bone) is 0.50 m long, and 
calculate the amount of compression this bone can withstand before breaking. 
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9  Heat and Thermodynamics 

Learning Outcomes 

After reading this chapter, students will be able to:  

 explain the difference between heat and temperature. 

 identify the lowest temperature as zero on the Kelvin scale (absolute zero). 

 explain the zeroth and first law of thermodynamics. 

 understand that heat is the amount of transferred energy (either to or from an object’s 
thermal energy) due to a temperature difference between the object and its environment. 

 convert a temperature between any two (linear) temperature scales, including the Celsius, 
Fahrenheit, and Kelvin scales. 

 apply the first law of thermodynamics to relate the change in the internal energy of a 
system, the energy transferred as heat to or from the system, and the work done on or by 
the system. 

 

Introduction  

The terms temperature and heat are often used interchangeably in everyday language. In physics, 
however, these two terms have very different meanings. A quantitative  

description of thermal phenomena requires careful definitions of such important terms as 
temperature, heat, and internal energy. Heat leads to changes in internal energy and thus to 
changes in temperature, which cause the expansion or contraction of matter.  In this chapter we will 
define temperature in terms of how it is measured and see how temperature changes affect the 
dimensions of objects. We will see that heat refers to energy transfer caused by temperature 
differences only and learn how to calculate and control such energy transfers. Our emphasis in this 
chapter is on the concepts of  

temperature and heat as they relate to macroscopic objects such as cylinders of gas, ice cubes, and 
the human body. We will also look into the concept of internal energy, the first law of 
thermodynamics, and some important applications of the first law. The first law of thermodynamics 
describes systems in which the only energy change is that of  

internal energy, and the transfers of energy are by heat and work. A major difference in our 
discussion of work in this chapter from that in most of the chapters on mechanics is that we will 
consider work done on deformable systems.  

 

9.1 The concept of Temperature: Zeroth Law of Thermodynamics  

Learning Outcomes 
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After reading this section, students will be able to:  

 understand temperature as the property that determines whether an object is in thermal 
equilibrium with other objects. 

 explain that two objects in thermal equilibrium with each other are at the same 
temperature. 

 explain the zeroth law of thermodynamics. 

 understand the difference between heat and temperature. 

  

We often associate the concept of temperature with how hot or cold an object feels when we touch 
it. In this way, our senses provide us with a qualitative indication of temperature. Our senses, 
however, are unreliable and often mislead us. For example, if you stand in bare feet with one foot on 
carpet and the other on an adjacent tile floor, the tile feels colder than the carpet even though both 
are at the same temperature. The two objects feel different because tile transfers energy by heat at 
a higher rate than carpet does. Your skin “measures” the rate of energy transfer by heat rather than 
the actual temperature. What we need is a reliable and reproducible method for measuring the 
relative hotness or coldness of objects or a method related solely to temperature measurement 
rather than the rate of energy transfer. Scientists have developed a variety of thermometers for 
making such quantitative measurements. 

Two objects at different initial temperatures eventually reach some intermediate temperature when 
placed in contact with each other. For example, when hot water and cold water are mixed in a 
bathtub, energy is transferred from the hot water to the cold water and the final temperature of the 
mixture is somewhere between the initial hot and cold temperatures. Imagine that two objects are 
placed in an insulated container such that they interact with each other but not with the 
environment. If the objects are at different temperatures, energy is transferred between them, even 
if they are initially not in physical contact with each other. The energy-transfer mechanisms are heat 
and electromagnetic radiation. For purposes of this discussion, assume that two objects are in 
thermal contact with each other if energy can be exchanged between them by these processes due 
to a temperature difference. Thermal equilibrium is a situation in which two objects would not 
exchange energy by heat or electromagnetic radiation if they were placed in thermal contact. 

Let’s consider two objects A and B, which are not in thermal contact, and a third object C, which is 
our thermometer. We wish to determine whether A and B are in thermal equilibrium with each 
other. The thermometer (object C) is first placed in thermal contact with object A until thermal 
equilibrium is reached. From that moment on, the thermometer’s reading remains constant and we 
record this reading. The thermometer is then removed from object A and placed in thermal contact 
with object B. The reading is again recorded after thermal equilibrium is reached. If the two readings 
are the same, we can conclude that object A and object B are in thermal equilibrium with each 
other. If they are placed in contact with each other, there is no exchange of energy between them. 
We can summarize these results in a statement known as the zeroth law of thermodynamics (the 
law of equilibrium): 

If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in 
thermal equilibrium with each other. 

This statement can easily be proved experimentally and is very important because it enables us to 
define temperature. We can think of temperature as the property that determines whether an 
object is in thermal equilibrium with other objects. Two objects in thermal equilibrium with each 
other are at the same temperature. Conversely, if two objects have different temperatures, they are 
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not in thermal equilibrium with each other. We now 
know that temperature is something that determines 
whether or not energy will transfer between two 
objects in thermal contact. 

 

Example:  

Does the temperature of a body depend on its size? 

Solution:   

No, the system can be divided into smaller parts each 
of which is at the same temperature. We say that the 
temperature is an intensive quantity. Intensive 
quantities are independent of size. 

 

Question:  

Two objects, with different sizes, masses, and 
temperatures, are placed in thermal contact. In which 
direction does the heat energy travel? (a) From the 
larger object to the smaller object. (b) From the object with more mass to the one with less mass. (c) 
From the object at higher temperature to the object at lower temperature. 

 

9.2 Temperature scales and Absolute Temperature 

Learning Outcomes 

After reading this section, students will be able to:  

 explain the conditions for measuring a temperature with a constant-volume gas 
thermometer. 

 relate the pressure and temperature of a gas in some given state to the pressure and 
temperature at the triple point for a constant-volume gas thermometer. 

 convert a temperature between any two (linear) temperature scales, including the Celsius, 
Fahrenheit, and Kelvin scales. 

 identify that a change of one degree is the same on the Celsius and Kelvin scales. 

 Understand how to relate different temperature scales. 

 

Thermometers are devices used to measure the temperature of a system. All thermometers are 
based on the principle that some physical property of a system changes as the system’s temperature 
changes. Some physical properties that change with temperature are the volume of a liquid, the 
dimensions of a solid, the pressure of a gas at constant volume, the volume of a gas at constant 
pressure, the electric resistance of a conductor, and the color of an object.  

A common thermometer in everyday use consists of a mass of liquid—usually mercury or alcohol 
that expands into a glass capillary tube when heated as shown in Figure 9.1. In this case, the physical 
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property that changes is the volume of a liquid. Any temperature change in the range of the 
thermometer can be defined as being proportional to the change in length of the liquid column. In 
order to measure temperature quantitatively, some sort of numerical scale must be defined. The 
most common scale today is the Celsius scale, sometimes called the centigrade scale. In some 
countries, the Fahrenheit scale is also common. The most important scale in scientific work is the 
absolute or Kelvin scale, and it will be discussed later in this subsection. One way to define a 
temperature scale is to assign arbitrary values to two 
readily reproducible temperatures. For both the 
Celsius and Fahrenheit scales these two fixed points 
are chosen to be the freezing point and the boiling 
point of water, both taken at standard atmospheric 
pressure. On the Celsius scale, the freezing point of 
water is chosen to be 0  (“zero degrees Celsius”) 
and the boiling point 100 . On the Fahrenheit scale, 
the freezing point is defined as 32  and the boiling 
point 212oF. A practical thermometer is calibrated by 
placing it in carefully prepared environments at each 
of the two temperatures and marking the position of 
the liquid or pointer. For a Celsius scale, the 
 distance between the two marks is divided into one 
hundred equal intervals representing each degree 
between 0  and 100  (hence the name 
“centigrade scale” meaning “hundred steps”). For a 
Fahrenheit scale, the two points are labeled 32oF 
and 212oF and the distance between them is divided 
into 180 equal intervals. For temperatures below the 
freezing point of water and above the boiling point 
of water, the scales may be extended using the same equally spaced intervals. However, 
thermometers can be used only over a limited temperature range because of their own limitations; 
for example, the liquid mercury in a mercury-in-glass thermometer solidifies at some point, below 
which the thermometer will be useless. It is also rendered useless above temperatures where the 
fluid, such as alcohol, vaporizes. For very low or very high temperatures, specialized thermometers 
are required, some of which we will mention later. Every temperature on the Celsius scale 
corresponds to a particular temperature on the Fahrenheit scale. It is easy to convert from one to 
the other if you remember that 0  corresponds to 32oF and that a range of 100o on the Celsius scale 
corresponds to a range of 180o on the Fahrenheit scale. Thus, one Fahrenheit degree (1Fo) 

corresponds to  
   

   
 (or 

 

 
) of a Celsius degree (1Co). That is,      

 

 
Co. (Notice that when we refer to 

a specific temperature, we say “degrees Celsius,” as in 20 ; but when we refer to a change in 
temperature or a temperature interval, we say “Celsius degrees,” as in “2Co.”) 

Different materials, because of how we calibrate them, will agree at 0  and at 100 . But because 
of different expansion properties, they may not agree precisely at intermediate temperatures 
(remember we arbitrarily divided the thermometer scale into 100 equal divisions between 0  and 
100 ). Thus, a carefully calibrated mercury-in-glass thermometer might register 52.0 , whereas a 
carefully calibrated thermometer of another type might read 52.6 . Discrepancies below 0  and 
above 100  can also be significant. Because of such discrepancies, it is important to have a very 
precisely defined temperature scale so that measurements of temperature made at different 
laboratories around the world can be accurately compared.  

As shown in the simplified diagram shown in Figure 9.2, this thermometer consists of a bulb filled 
with a dilute gas connected by a thin tube to a mercury manometer. The volume of the gas is kept 
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constant by raising or lowering the right-hand tube of the manometer so that the mercury in the 
left-hand tube coincides with the reference mark. An increase in temperature causes a proportional 
increase in pressure in the bulb. Thus, the tube must be lifted higher to keep the gas volume 
constant. The height of the mercury in the right-hand column is then a measure of the temperature. 
This thermometer gives the same results for all gases in the limit of reducing the gas pressure in the 
bulb toward zero. The standard thermometer for this scale is the constant-volume gas thermometer. 
The scale itself is called the ideal gas temperature scale, since it is based on the property of an ideal 
gas that the pressure is directly proportional to the absolute temperature (Gay-Lussac’s law).  

A real gas, which would need to be used in any real constant-volume gas thermometer, approaches 
this ideal at low density. In other words, the temperature at any point in space is defined as being 
proportional to the pressure in the (nearly) ideal gas used in the thermometer. The scale that is set is 
called absolute temperature scale (also called the Kelvin scale) which uses the unit kelvin 
(abbreviated as K). To set a scale we need two fixed points. The first point is absolute zero (or T = 0 
K) where pressure is zero. The second fixed point is chosen to be the triple point of water, which is 
the point where water in the solid, liquid, and gas states can coexist in equilibrium. This occurs only 
at a unique temperature of 0.01  and pressure of 4.58 torr (mm of mercury). On the Kelvin scale 
the temperature of water at the triple point was set at 273.16 K. Therefore, the SI unit of 
temperature, the kelvin, is defined as 1/273.16 of the temperature of the triple point of water. The 
absolute or Kelvin temperature T at any point is then defined, using a constant-volume gas 
thermometer for an ideal gas, as 

                  73  6    
 

   
                                                                                                        9     

In this relation,     is the pressure of the gas in the thermometer at the triple point temperature of 

water and P is the pressure in the thermometer when it is at the point where T is being determined. 
Note that if we let P =     in this relation, then T = 273.16 K. The definition of temperature, Eq. (9.1), 

with a constant volume gas thermometer filled with a real gas is only approximate because we find 
that we get different results for the temperature depending on the type of gas that is used in the 
thermometer. Temperatures determined in this way also vary depending on the amount of gas in 
the bulb of the thermometer. However, as we use smaller and smaller amounts of gas to fill the bulb, the 

readings converge nicely to a single temperature, no matter what gas we use. Thus, the temperature T at any 
point in space, determined using a constant-volume gas thermometer containing a real gas, is 
defined using this limiting process: 

      73  6           
 

 

   
                                                                                                                 (9.2)  

This defines the ideal gas temperature scale. One of the great advantages of this scale is that the 
value for T does not depend on the kind of gas used. But the scale does depend on the properties of 
gases in general. Helium has the lowest condensation point of all gases; at very low pressures it 
liquefies at about 1 K, so temperatures below this cannot be defined on this scale. Absolute zero is 
used as the basis for the Kelvin temperature scale, which sets -273.15°C as its zero point (0 K). The 
size of a “degree” on the Kelvin scale is chosen to be identical to the size of a degree on the Celsius 
scale. If TC represents a Celsius temperature and T a Kelvin temperature, then the relationship 
between these two temperature scales is  

         73  5                        𝑞  9 3      

 

In expressing temperatures on the Celsius scale, the degree symbol is commonly used. Thus, we 
write 20.00oC for a Celsius reading but 293.15 K for a Kelvin reading. 
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Example 1  

On a day when the temperature reaches 50oF, what is the temperature in degrees Celsius and in 
kelvins? 

Solution  

Celsius temperature:   TC =
 

 
(TC - 32) = 

 

 
(50 - 32) = 10  

Kelvin temperature:  T = TC + 273.15 = 10  + 273.15 = 283 K. 

 

Example 2  

Suppose you come across old scientific notes that describe a temperature scale called Z on which the 
boiling point of water is 75.0oZ and the freezing point is -15.0oZ. To what temperature on the 
Fahrenheit scale would a temperature of T = 45.0oZ correspond? Assume that the Z scale is linear; 
that is, the size of a Z degree is the same everywhere on the Z scale. 

Solution 

To find the corresponding temperature on the Fahrenheit scale we set up a conversion factor 
between the Z and Fahrenheit scales using both known temperatures on the Z scale and the 
corresponding temperatures on the Fahrenheit scale. On the Z scale, the difference between the 
boiling and freezing points is 75.0oZ - (-15.0oZ) = 90.0 Zo. On the Fahrenheit scale, it is 212oF - 32.0oF = 
180 Fo. Thus, a temperature difference of 90.0 Zo is equivalent to a temperature difference of 180 Fo, 

and we can use the relation 
      

        
         

7          
. This means that T = 152oF.  

Question 1  

Rank the following temperatures from highest to lowest: (i) 0.00oC; (ii) 0.00oF; (iii) 260.00 K; (iv) 
77.00 K; (v) -180.00oC.  

Question 2  

Suppose the temperature of a gas is 373.15 K when it is at the boiling point of water. What then is 
the limiting value of the ratio of the pressure of the gas at that boiling point to its pressure at the 
triple point of water? (Assume the volume of the gas is the same at both temperatures.) 

Question 3  

Which represents a larger temperature change, a Celsius degree or a Fahrenheit degree? 

 

9.3 Thermal Expansion 

Learning Outcomes 

After reading this section, students will be able to:  

 apply for one-dimensional thermal expansion the relationship between the temperature 
change, the length change, the initial length, and the coefficient of linear expansion. 

 use one-dimensional thermal expansion to find the change in area for two-dimensional 
thermal expansion. 
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 apply for three-dimensional thermal expansion, the relationship between the 

 temperature change, the volume change, the initial volume, and the coefficient of volume 
expansion. 

 

Most substances expand when heated and contract when cooled. However, the amount of 
expansion or contraction varies, depending on the material. 

 

9.3.1 Linear Expansion 

Experiments indicate that the change in length    of almost all solids is, to a good approximation, 
directly proportional to the change in temperature   , as long as    is not too large. The change in 
length is also proportional to the original length of the object,   . That is, for the same temperature 
increase, a 4 m long iron rod will increase in length twice as much as a 2m long iron rod. We can 
write this proportionality as an equation:        

                                                                                                                                       (9.4)                                 

where  , the proportionality constant, is called the coefficient of linear expansion for the particular 
material and has units of ( )−1. We write           , and rewrite this equation as 

                  , or                                                           9 5                                                                 

 where    is the initial length, at temperature   , and   is the length after heating or cooling to a 
temperature  . If the temperature change             is negative, then             is also 
negative; the length shortens as the temperature decreases. The values of α for various materials 
vary slightly with temperature. However, if the temperature range is not too great, the variation can 
usually be ignored. 

 

9.3.2 Volume Expansion 

The change in volume of a material which undergoes a temperature change is given by a relation 
similar to Eq. (9.4), namely, 

                                                                                                                                  9 6                                                                                                        

where    is the change in temperature,    is the original volume,    is the change in volume, and   
is the coefficient of volume expansion. The units of   are ( )−1. Notice that for solids,   is normally 
equal to approximately 3 . To see why, consider a rectangular solid of length   , width   , and 
height   . When its temperature is changed by   , its volume changes from    =         to   

                                                                                           9 7                                                 

using Eq. (4) and assuming α is the same in all directions. Thus, 

                                       3      3               . 

If the amount of expansion is much smaller than the original size of the object, then     << 1 and 
we can ignore all but the first term and obtain    ≈   3      . This is the same as Eq. (9.6) with 
  ≈   3  . For solids that are not isotropic (or that do not have the same properties in all 
directions), however, the relation   ≈   3   is not valid. Note also that linear expansion has no 
meaning for liquids and gases since they do not have fixed shapes. In a similar way, you can show 
that the change in area of a rectangular plate is given by    ≈          , where    is the original 
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area, and    is the change in area. Equations (9.4) and (9.6) are accurate only if    (or   ) is small 
compared to    (or   ). This is of particular concern for liquids and even more so for gases because 
of the large values of  . Furthermore,   itself varies substantially with temperature for gases. 

 

Example  

A segment of steel railroad track has a length of 30.0 m when the temperature is 0.0oC. What is its 
length when the temperature is 40.0oC? 

Solution  

Using the value of the coefficient of linear expansion for steel α = 11 × 10−6( )−1 in Equation (9.4) we 
get 

           = [11 × 10−6( )−1](30.000 m)(40.0 ) = 0.013 m 

 

Question 1  

Assuming all have the same initial volume, rank the following substances by the amount of volume 
expansion due to an increase in temperature, from least to most: glass, mercury, aluminum, ethyl 
alcohol. 

Question 2  

If you are asked to make a very sensitive glass thermometer, which of the following working fluids 
would you choose? (a) mercury (b) alcohol (c) gasoline (d) glycerin 

 

9.4 The Concept of Heat and Energy 

Learning Outcomes 

After completing this section, students will be able to:  

 understand that heat is the amount of energy that is transferred either to or from an object 
when there is a temperature difference between the object and its environment. 

 explain that internal energy is associated with the energies of its microscopic components, 
atoms and/or molecules, when viewed from a reference frame at rest with respect to the 
center of mass of the system. 

 identify that energy is a state variable while heat is a parameter that occurs during a 
transformation of a system from one equilibrium state to another. 

 

Internal energy is all the energy of a system that is associated with its microscopic components, 
atoms and/or molecules, when viewed from a reference frame at rest with respect to the center of 
mass of the system. Internal energy includes kinetic energy of random translational, rotational, and 
vibrational motion of molecules; vibrational potential energy associated with forces between atoms 
in molecules; and electric potential energy associated with forces between molecules. The bulk 
kinetic energy of the system due to its motion through space is not included in internal energy. Heat 
is defined as a process of transferring energy across the boundary of a system because of a 
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temperature difference between the system and its surroundings. It is also the amount of energy Q 
transferred by this process. When you heat a substance, you are transferring energy into it by 
placing it in contact with surroundings that have a higher temperature. Such is the case, for example, 
when you place a pan of cold water on a stove burner. The burner is at a higher temperature than 
the water, and so the water gains energy by heat. It makes no sense to talk about the heat of a 
system; one can refer to heat only when energy has been transferred as a result of a temperature 
difference.  

A common unit for heat, still in use today, is named after caloric. It is called the calorie (cal) and is 
defined as the amount of heat necessary to raise the temperature of 1 gram of water by 1 Celsius 
degree. To be precise, the particular temperature range from 14.5  to 15.5  is specified because 
the heat required is very slightly different at different temperatures. The difference is less than 1 
percent over the range 0 to 100 , and we will ignore it for most purposes. More often used than 
the calorie is the kilocalorie (kcal), which is 1000 calories. Thus 1 kcal is the heat needed to raise the 
temperature of 1 kg of water by 1 C°. Often a kilocalorie is called a Calorie (with a capital C), and this 
Calorie (or the kilo joule) is used to specify the energy value of food. In the British system of units, 
heat is measured in British thermal units (Btu). One Btu is defined as the heat needed to raise the 
temperature of 1 lb of water by 1 F° where 1 Btu = 0.252 kcal = 1056 J, where 4.186 J = 1 cal.  

 

When different parts of an isolated system are at different temperatures, heat will flow (energy is 
transferred) from the part at higher temperature to the part at lower temperature—that is, within 
the system. If the system is truly isolated, no energy is transferred into or out of it, and the heat lost 
by one part of the system is equal to the heat gained by the other part: 

heat lost = heat gained  or energy out of one part = energy into another part. 

These simple relations are very useful, but depend on the (often very good) approximation that the 
whole system is isolated (no other energy transfers occur).  

 

9.5 Specific Heat and Latent Heat 

Learning Outcomes 

After completing this section, students will be able to:  

 understand that a heat transfer changes either the temperature or phase of a substance. 

 relate the temperature change of a substance to the heat transfer and the substance’s heat 
capacity. 

 relate the temperature change of a substance to the heat transfer and the substance’s 
specific heat and mass. 

 relate the heat transfer, the heat of transformation, and the amount of mass transformed 
for a phase change of a substance. 

 

When heat is added to an object and there is no change in the kinetic or potential energy of the 
object, the temperature of the object rises (assuming no phase change). If the system consists of a 
sample of a substance, the quantity of heat required to raise the temperature of a given mass of the 
substance by some amount varies from one substance to another. The amount of heat needed to 
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raise the temperature of a sample by 1oC is defined as the heat capacity   of the particular sample. 
From this definition, we see that if energy   produces a change    in the temperature of a sample, 
then 

                                                                                                                                     9 8                               

The amount of heat   required to change the temperature of a given material is proportional to the 
mass   of the material present and to the temperature change   . This relation can be expressed in 
the equation 

                                                                                                                              9 9                                     

where   is a quantity characteristic of the material called its specific heat which is specified in units 
of J/kg.   . The values of   for solids and liquids depend to some extent on temperature (as well as 
slightly on pressure), but for temperature changes that are not too great,   can often be considered 
constant.  

When a material changes phase from solid to liquid, or from liquid to gas, a certain amount of heat is 
involved in this change of phase. The heat required to change 1.0 kg of a substance from the solid to 
the liquid state is called the heat of fusion; it is denoted by   . The heat required to change a 
substance from the liquid to the vapor phase is called the heat of vaporization,   . The melting-point 
and boiling-point temperatures and the corresponding heats of fusion and vaporization are different 
for different substances. Heats of fusion and vaporization are also called the latent heats. The heats 
of vaporization and fusion also refer to the amount of heat released by a substance when it changes 
from a gas to a liquid, or from a liquid to a solid. The heat involved in a change of phase depends not 
only on the latent heat but also on the total mass of the substance. That is,  

                                                                                                                                9                                      

where   is the latent heat of the particular process and substance,   is the mass of the substance, 
and   is the heat added or released during the phase change. The latent heat is specifies in units of 
J/kg. 

 

Example  

Explain why a cup of water (or soda) with ice cubes stays at 0ºC , even on a hot summer day. 

Solution  

The ice and liquid water are in thermal equilibrium, so that the temperature stays at the freezing 
temperature as long as ice remains in the liquid. (Once all of the ice melts, the water temperature 
will start to rise.) 

Example  

If 25 kJ is necessary to raise the temperature of a block from 25ºC to 30ºC , how much heat is 
necessary to heat the block from 45ºC to 50ºC ? 

Solution 

The heat transfer depends only on the temperature difference. Since the temperature differences 
are the same in both cases, the same 25 kJ is necessary in the second case. 

Example  

Why does snow remain on mountain slopes even when daytime temperatures are higher than the 
freezing temperature? 

Solution  
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Snow is formed from ice crystals and thus is the solid phase of water. Because enormous heat is 
necessary for phase changes, it takes a certain amount of time for this heat to be accumulated from 
the air, even if the air is above 0ºC . The warmer the air is, the faster this heat exchange occurs and 
the faster the snow melts. 

Example  

A 0.050 kg ingot of metal is heated to 200.0  and then dropped into a calorimeter containing 0.400 
kg of water initially at 20.0 . The final equilibrium temperature of the mixed system is 22.4 . Find 
the specific heat of the metal. 

Solution  

Energy leaves the hot ingot and goes into the cold water, so the ingot cools off and the water warms 
up. Once both are at the same temperature   , the energy transfer stops. This can be written in 

equation form as  

    (      )        (        ) 

Solve for    

    
    (      )

  (      )
 

         4  4  86     4             5             4         

    453        

 

Question 1  

A person fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume 
all the internal energy generated by the impact remains with the bullet. What is the temperature 
change of the bullet?  The specific heat of silver is 234 J/kg . .      

Question 2  

A certain amount of heat Q will warm 1 g of material A by 3    and 1 g of material B by 4   .  Which 
material has the greater specific heat? 

 

9.6 Heat Transfer Mechanisms 

Learning Outcomes 

After completing this section, students will be able to:  

 understand a thermal conduction through a layer, and apply the relationship between the 
energy transfer rate and the layer’s area, thermal conductivity, thickness, and temperature 
difference between its two sides  for thermal conduction through a layer.   

 apply the relationship between thermal resistance, thickness, and thermal conductivity for 
thermal conduction through a layer. 

 identify that thermal energy can be transferred by convection, in which a warmer fluid (gas 
or liquid) tends to rise in a cooler fluid. 
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 apply the relationship between the energy-transfer rate and an object’s surface area, 
emissivity, and surface temperature in the emission of thermal radiation by the object. 

 calculate the net energy-transfer rate of an object emitting radiation to its environment and 
absorbing radiation from that environment. 

 

Heat is transferred from one place or body to another in three different ways: by conduction, 
convection, and radiation.  

 

9.6.1 Conduction 

When a long metal bar is put in a hot fire the exposed end of the bar soon becomes hot as well, even 
though it is not directly in contact with the source of heat. We say that heat has reached the cold 
end by means of conduction. Heat conduction in many materials can be visualized as being carried 
out via molecular collisions. As one end of an object is heated, the molecules there move faster and 
faster. As they collide with slower-moving neighbors, they transfer some of their kinetic energy to 
these other molecules, which in turn transfer energy by collision with molecules still farther along 
the object. In metals, collisions of free electrons are mainly responsible for conduction. Heat 
conduction from one point to another takes place only if there is a difference in temperature 
between the two points. Indeed, it is found experimentally that the rate of heat flow through a 
substance is proportional to the difference in temperature between its ends. The rate of heat flow 
also depends on the size and shape of the object. To investigate this quantitatively, let us consider 
the heat flow through a uniform cylindrical object. It is found experimentally that the heat flow    
over a time interval    is given by the relation 

                 
  

  
                                                                                               9                                   

where   is the cross-sectional area of the object,   is the distance between the two ends, which are 
at temperatures    and   , and   is a proportionality constant called the thermal conductivity which 
is characteristic of the material. From this equation, we see that the rate of heat flow (units of J/s) is 

directly proportional to the cross-sectional area and to the temperature gradient 
 1  2

 
 . 

 

Substances for which   is large conduct heat rapidly and are said to be good thermal conductors. 
Most metals fall in this category, although there is a wide range even among them. Substances for 
which   is small are poor conductors of heat and are therefore good thermal insulators. The relative 
magnitudes of   can explain simple phenomena such as why a tile floor is much colder on the feet 
than a rug-covered floor at the same temperature. Tile is a better conductor of heat than the rug. 
Heat that flows from your foot to the rug is not conducted away rapidly, so the rug’s surface quickly 
warms up to the temperature of your foot and feels good. But the tile conducts the heat away 
rapidly and thus can take more heat from your foot quickly, so your foot’s surface temperature 
drops. For practical purposes the thermal properties of building materials, particularly when 
considered as insulation, are usually specified by  -values (or “thermal resistance”), defined for a 
given thickness   of material as 

       . The  -value of a given piece of material combines the thickness   and the thermal 
conductivity   in one number. 
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9.6.2 Convection 

Convection is the process whereby heat flows by the mass movement of molecules from one place 
to another. Whereas conduction involves molecules (and/or electrons) moving only over small 
distances and colliding, convection involves the movement of large numbers of molecules over large 
distances. A forced-air furnace, in which air is heated and then blown by a fan into a room, is an 
example of forced convection. Natural convection occurs as well, and one familiar example is that 
hot air rises. For instance, the air above a radiator (or other type of heater) expands as it is heated, 
and hence its density decreases. Because its density is less than that of the surrounding cooler air, it 
rises. Wind is another example of convection, and weather in general is strongly influenced by 
convective air currents. When a pot of water is heated, convection currents are set up as the heated 
water at the bottom of the pot rises because of its reduced density. That heated water is replaced by 
cooler water from above. The air throughout the room becomes heated as a result of convection. 
The air heated by the radiators rises and is replaced by cooler air, resulting in convective air currents. 
Other types of furnaces also depend on convection. Hot-air furnaces with openings near the floor 
often do not have fans but depend on natural convection, which can be appreciable. In other 
systems, a fan is used. In either case, it is important that cold air can return to the furnace so that 
convective currents circulate throughout the room if the room is to be uniformly heated.  

 

9.6.3 Radiation 

Unlike convection and conduction which require the presence of matter as a medium to carry the 
heat from the hotter to the colder region a heat transfer through radiation occurs without any 
medium at all. Radiation consists essentially of electromagnetic waves. The Sun consists of visible 
light plus many other wavelengths that the eye is not sensitive to, including infrared (IR) radiation. 
All life on the Earth depends on the transfer of energy from the Sun, and this energy is transferred to 
the Earth over empty (or nearly empty) space. This form of energy transfer is heat—since the Sun’s 
surface temperature is much higher than Earth’s—and is referred to as radiation. The warmth we 
receive from a fire is mainly radiant energy. All objects radiate energy continuously in the form of 
electromagnetic waves produced by thermal vibrations of the molecules. The rate at which the 
surface of an object radiates energy is proportional to the fourth power of the absolute temperature 
of the surface. This behavior is expressed in equation form as 

                                                                                                                           9                                    

where   is the power in watts of electromagnetic waves radiated from the surface of the object,   is 
a constant equal to 5.6696 × 10−8Wm-2.K−4,   is the surface area of the object in square meters,   is 
the emissivity, and   is the surface temperature in kelvins. The value of   can vary between zero and 
unity depending on the properties of the surface of the object. The emissivity is equal to the 
absorptivity, which is the fraction of the incoming radiation that the surface absorbs. A mirror has 
very low absorptivity because it reflects almost all incident light. Therefore, a mirror surface also has 
a very low emissivity.  At the other extreme, a black surface has high absorptivity and high 
emissivity. An ideal absorber is defined as an object that absorbs all the energy incident on it, and for 
such an object,      . An object for which       is often referred to as a black body. 

 

As an object radiates energy at a rate given by Equation (9.12), it also absorbs electromagnetic 
radiation from the surroundings, which consist of other objects that radiate energy. If the latter 
process did not occur, an object would eventually radiate all its energy and its temperature would 
reach absolute zero. If an object is at a temperature   and its surroundings are at an average 
temperature   , the net rate of radiant heat flow from the object is given by 
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                                                                                  9  3        

When an object is in equilibrium with its surroundings, it radiates and absorbs energy at the same 
rate and its temperature remains constant. When an object is hotter than its surroundings, it 
radiates more energy than it absorbs and its temperature decreases. 

 

Example  

Name an example from daily life for each mechanism of heat transfer. 

Solution  

Conduction:  Heat transfers into your hands as you hold a hot cup of coffee. 

Convection:  Heat transfers as the barista “steams” cold milk to make it hot. 

Radiation:  Reheating a cold cup of coffee in a microwave oven. 

Example  

How does the rate of heat transfer by conduction change when all spatial dimensions are doubled? 

Solution  

Because area is the product of two spatial dimensions, it increases by a factor of four when each 
dimension is doubled. The distance, however, simply doubles. Because the temperature difference 
and the coefficient of thermal conductivity are independent of the spatial dimensions, the rate of 
heat transfer by conduction increases by a factor of four divided by two. 

Example  

Explain why using a fan in the summer feels refreshing! 

Solution  

Using a fan increases the flow of air: warm air near your body is replaced by cooler air from 
elsewhere. Convection increases the rate of heat transfer so that moving air “feels” cooler than still 
air. 

Example  

What is the change in the rate of the radiated heat by a body at the temperature          
compared to when the body is at the temperature     4    ? 

Solution 

The radiated heat is proportional to the fourth power of the absolute temperature. Because 
     93   and     3 3  , the rate of heat transfer increases by about 30 percent of the original 
rate. 

9.7 Energy Conservation: The First Law of Thermodynamics 

Learning Outcomes 

After completing this section, students will be able to:  

 apply the first law of thermodynamics to relate the change in the internal energy of a 
system, the energy transferred as heat to or from the system, and the work done on or by 
the gas. 
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 identify the algebraic sign of work when it is done by a system or on the system. 

 identify the algebraic sign of a heat transfer that is associated with a transfer to a system 
and a transfer from the system. 

 identify that the internal energy of a system tends to increase if the heat transfer is to the 
system, and it tends to decrease if the system does work on its environment.  

 

Work is done when energy is transferred from one object to another by mechanical means. We saw 
that heat is a transfer of energy from one object to a second one at a lower temperature. Thus, heat 
is much like work. To distinguish them, heat is defined as a transfer of energy due to a difference in 
temperature, whereas work is a transfer of energy that is not due to a temperature difference. We 
also saw that the internal energy of a system as the sum total of all the energy of the molecules 
within the system. We would expect that the internal energy of a system would be increased if work 
was done on the system, or if heat were added to it. Similarly the internal energy would be 
decreased if heat flowed out of the system or if work were done by the system on something in the 
surroundings. Thus it is reasonable to extend conservation of energy and propose an important law: 
the change in internal energy of a closed system,   , will be equal to the energy added to the 
system by heating minus the work done by the system on the surroundings. In equation form we 
write 

                                                                                                                         9  4                           

where   is the net heat added to the system and   is the net work done by the system. In this case 
the work   in Eq. (9.14) is negative because the work done is by the system, but if the work is done 
on the system,   will be positive. Similarly,   is positive for heat added to the system, but if heat 
leaves the system,   is negative. Equation (9.14) is known as the first law of thermodynamics. Since 
  and   represent energy transferred into or out of the system, the internal energy changes 
accordingly. Thus, the first law of thermodynamics is a great and broad statement of the law of 
conservation of energy. Equation (9.14) applies to a closed system. It also applies to an open system 
if we take into account the change in internal energy due to the increase or decrease in the amount 
of matter. For an isolated system, no work is done and no heat enters or leaves the system, so 
         , and hence       . A given system at any moment is in a particular state and can be 
said to have a certain amount of internal energy,  . But a system does not “have” a certain amount 
of heat or work. Rather, when work is done on a system (such as compressing a gas), or when heat is 
added or removed from a system, the state of the system changes. Thus, work and heat are involved 
in thermodynamic processes that can change the system from one state to another; they are not 
characteristic of the state itself or not state variables. Quantities which describe the state of a 
system, such as internal energy  , pressure  , volume   , temperature  , and mass   or number of 
moles  , are called state variables. Because   is a state variable, which depends only on the state of 
the system and not on how the system arrived in that state, we can write                 
  where    and    represent the internal energy of the system in states 1 and 2, and   and   are 
the heat added to the system and work done by the system in going from state 1 to state 2. 

 

Example  

Two samples (A and B) of the same substance are kept in a lab. Someone adds 10 kilojoules (kJ) of 
heat to one sample, while 10 kJ of work is done on the other sample. How can you tell to which 
sample the heat was added? 

Solution 
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Heat and work both change the internal energy of the substance. However, the properties of the 
sample only depend on the internal energy so that it is impossible to tell whether heat was added to 
sample A or B. 

Example 

A 1.0 kg bar of copper is heated at atmospheric pressure so that its temperature increases from 20  
to 50 . a) How much energy is transferred to the copper bar by heat? b) What is the increase in 
internal energy of the copper bar? 

Solution  

The energy transferred to the copper bar by the heat is found from the relation Q = mcΔT = 1.2x104 
J, where m is 1 kg, c = 387 J/kg.   is the specific heat capacity of copper, and ΔT = 50  - 20  = 
30 . 

 

9.8 Summary  

Two objects are in thermal equilibrium with each other if they do not exchange energy when in 
thermal contact.  

Temperature is the property that determines whether an object is in thermal equilibrium with other 
objects. Two objects in thermal equilibrium with each other are at the same temperature. The SI unit 
of absolute temperature is the kelvin, which is defined to be 1/273.16 of the difference between 
absolute zero and the temperature of the triple point of water. 

The zeroth law of thermodynamics states that if objects A and B are separately in thermal 
equilibrium with a third object C, then objects A and B are in thermal equilibrium with each other.  

Internal energy is a system’s energy associated with its temperature and its physical state (solid, 
liquid, gas). Internal energy includes kinetic energy of random translation, rotation, and vibration of 
molecules; vibrational potential energy within molecules; and potential energy between molecules.  

Heat is the process of energy transfer across the boundary of a system resulting from a temperature 
difference between the system and its surroundings. 

A calorie is the amount of energy necessary to raise the temperature of 1 g of water from 14.5  to 
15.5 .  

The heat capacity C of any sample is the amount of energy needed to raise the temperature of the 
sample by 1 . 

Conduction can be viewed as an exchange of kinetic energy between colliding molecules or 
electrons. Convection occurs when temperature differences cause an energy transfer by motion 
within a fluid. Radiation is an energy transfer via the emission of electromagnetic energy. 

 

9.9 Conceptual Questions 

1. What does it mean to say that two systems are in thermal equilibrium? 

2. Give an example of a physical property that varies with temperature and describe how it is 
used to measure temperature. 
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3. When a cold alcohol thermometer is placed in a hot liquid, the column of alcohol goes down 
slightly before going up. Explain why. 

4. If you add boiling water to a cup at room temperature, what would you expect the final 
equilibrium temperature of the unit to be? You will need to include the surroundings as part 
of the system. Consider the zeroth law of thermodynamics 

5. Does it really help to run hot water over a tight metal lid on a glass jar before trying to open 
it? Explain your answer. 

6. How is heat transfer related to temperature? 

7. Describe a situation in which heat transfer occurs. What are the resulting forms of energy? 

8. When heat transfers into a system, is the energy stored as heat? Explain briefly. 

9. What three factors affect the heat transfer that is necessary to change an object’s 
temperature? 

10. The brakes in a car increase in temperature by    when bringing the car to rest from a 
speed v . How much greater would    be if the car initially had twice the speed? You may 
assume the car to stop sufficiently fast so that no heat transfers out of the brakes. 

11. What is the temperature of ice right after it is formed by freezing water? 

12. If you place 0ºC ice into 0ºC water in an insulated container, what will happen? Will some ice 
melt, will more water freeze, or will neither take place? 

13. Is it possible for two objects to be in thermal equilibrium if they are not in contact with each 
other? Explain.  

14. Suppose you empty a tray of ice cubes into a bowl partly full of water and cover the bowl. 
After one-half hour, the contents of the bowl come to thermal equilibrium, with more liquid 
water and less ice than you started with. Which of the following is true? (a) The temperature 
of the liquid water is higher than the temperature of the remaining ice. (b) The temperature 
of the liquid water is the same as that of the ice. (c) The temperature of the liquid water is 
less than that of the ice. (d) The comparative temperatures of the liquid water and ice 
depend on the amounts present. 

15. A piece of copper is dropped into a beaker of water. (a) If the water’s temperature rises, 
what happens to the temperature of the copper? (b) Under what conditions are the water 
and copper in thermal equilibrium? 

 

9.10 problems 

1. Markings to indicate length are placed on a steel tape in a room that is at a temperature of 
22 . Measurements are then made with the same tape on a day when the temperature is 
27 . Assume the objects you are measuring have a smaller coefficient of linear expansion 
than steel. Are the measurements (a) too long, (b) too short, or (c) accurate? 

2. A temperature of 162oF is equivalent to what temperature in kelvins? 

3. Suppose you come across old scientific notes that describe a temperature scale called Z on 
which the boiling point of water is 65.0oZ and the freezing point is -14.0oZ. To what 

4. temperature on the Fahrenheit scale would a temperature of T=-98.0oZ correspond? Assume 
that the Z scale is linear; that is, the size of a Z degree is the same everywhere on the Z scale. 
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5. A pair of eyeglass frames is made of epoxy plastic. At room temperature (20.0 ), the frames 
have circular lens holes 2.20 cm in radius. To what temperature must the frames be heated 
if lenses 2.21 cm in radius are to be inserted in them? The average coefficient of linear 
expansion for epoxy is 1.30 x 10–4 ( )–1. 

6. A poker is a stiff, nonflammable rod used to push burning logs around in a fireplace. For 
safety and comfort of use, should the poker be made from a material with (a) high specific 
heat and high thermal conductivity, (b) low specific heat and low thermal conductivity, (c) 
low specific heat and high thermal conductivity, or (d) high specific heat and low thermal 
conductivity? 

7. An amount of energy is added to ice, raising its temperature from -10  to -5 . A larger 
amount of energy is added to the same mass of water, raising its temperature from 15  to 
20 . From these results, what would you conclude? 

8. The specific heat of substance A is greater than that of substance B. Both A and B are at the 
same initial temperature when equal amounts of energy are added to them. Assuming no 
melting or vaporization occurs, which of the following can be concluded about the final 
temperature TA of substance A and the final temperature TB of substance B? (a) TA >TB (b) TA 
<TB (c) TA = TB  

9. A 100 g piece of copper, initially at 95.0 , is dropped into 200 g of water contained in a 280 
g copper can; the water and can are initially at 15.0 . What is the final temperature of the 
system? (Specific heats of A glass windowpane in a home is 0.620 cm thick and has 
dimensions of 1.00 m x 2.00 m. On a certain day, the temperature of the interior surface of 
the glass is 25.0  and the exterior surface temperature is 0 . (a) What is the rate at which 
energy is transferred by heat through the glass? (b) How much energy is transferred through 
the window in one day, assuming the temperatures on the surfaces remain constant? 

10. Rub the palm of your hand on a metal surface for about 30 seconds. Place the palm of your 
other hand on an unrubbed portion of the surface and then on the rubbed portion. The 
rubbed portion will feel warmer. Now repeat this process on a wood surface. Why does the 
temperature difference between the rubbed and unrubbed portions of the wood surface 
seem larger than for the metal surface? 

11. What mass of water at 25.0  must be allowed to come to thermal equilibrium with a 1.85 
kg cube of copper initially at 150  to lower the temperature of the copper to 65.0 ? 
Assume any water turned to steam subsequently condenses. 

12. A thermodynamic system undergoes a process in which its internal energy decreases by 500 
J. Over the same time interval, 220 J of work is done on the system. Find the energy 
transferred from it by heat. 

13. The surface of the Sun has a temperature of about 5 800 K. The radius of the Sun is 6.96 x 
108 m. Calculate the total energy radiated by the Sun each second. Assume the emissivity of 
the Sun is 0.986. 
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10 Oscillations and Waves 

 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Describe ... 

 . 

 

Introduction 

Periodic motion or oscillatory motion is motion of an object that regularly returns to a given position 
after a fixed time interval. With a little thought, we can identify several types of periodic motion in 
everyday life. In periodic motion, a body repeats a certain motion indefinitely, always returning to its 
starting point after a constant time interval and then starting a new cycle. Examples of periodic 
motion are: 

 

 A mass attached to a spring executes periodic motion when the spring is pulled out and 
released. 

 simple pendulum 

 a bungee jumper hangs from a bungee cord and oscillates up and down 

 a guitar string vibrates back and forth in a standing wave, with each element of the string 
moving in simple harmonic motion 

 a piston in a gasoline engine oscillates up and down within the cylinder of the engine 

 an atom in a diatomic molecule vibrates back and forth as if it is connected by a spring to the 
other atom in the molecule 

 

10.1 Simple Harmonic Motion 

In mechanics and physics, simple harmonic motion is a special type of periodic motion or oscillation 
where (a) motion is about an equilibrium position at which point no net force acts on the system,(b) 
the restoring force is directly proportional to the displacement   from the equilibrium position and 
(c) acts in the direction opposite to that of displacement. 

Simple harmonic motion can serve as a mathematical model for a variety of motions, such as the 
oscillation of a spring. In addition, other phenomena can be approximated by simple harmonic 
motion, including the motion of a simple pendulum as well as molecular vibration. Simple harmonic 
motion is typified by the motion of a mass on a spring when it is subject to the linear elastic 
restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single 
resonant frequency. For simple harmonic motion to be an accurate model for a pendulum, the net 
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force on the object at the end of the pendulum must be proportional to the displacement. This is a 
good approximation when the angle of the swing is small. We consider two important model 
systems that exhibit simple harmonic motion that is mass on a spring and simple pendulum. 

 

10.1.1 Motion of an Object Attached to a Spring 

Consider a block of mass m attached to the end of a spring, with the block free to move on a 
frictionless, horizontal surface (Figure10.1). When the spring is neither stretched nor compressed, 
the block is at rest at the position called the equilibrium position of the system, which we identify as 
x = 0 (Figure10.1b). We know from experience that such a system oscillates back and forth if 
disturbed from its equilibrium position. We can understand the oscillating motion by first recalling 
that when the block is displaced to a position x, the spring exerts on the block a force that is 
proportional to the position and given by Hooke’s law:  

                                                                           [10.1] 

Her   is called the spring constant and   is called a restoring force because it is always directed 
toward the equilibrium position and therefore opposite the displacement of the block from 
equilibrium. That is, when the block is displaced to the right of x = 0 in Figure 10.1c, the position is 
positive and the restoring force is directed to the left. When the block is displaced to the left of 
    as in Figure 10.1a, the position is negative and the restoring force is directed to the right. 
When the block is displaced from the equilibrium point and released, the particle is under a net 
force and consequently undergoes an acceleration. Applying Newton's second law for the net force 
acting on the particle in motion, the acceleration  of the particle in the x direction becomes 

                                                               [10.2a] 

   
 

 
                                                                   [10.2b] 

where  is the spring constant or force constant of the spring.  

 

To discuss oscillatory motion, we need to define a few terms. The distance x of the mass from the 
equilibrium point at any moment is called the displacement. The amplitude A of a body undergoing 
simple harmonic motion is the maximum value of its displacement on either side of the equilibrium 
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position. One cycle refers to the complete to-and-fro motion from some initial point back to that 
same point, say, from x = -A to x = A and back to x = -A. 

The period T of a body undergoing simple harmonic motion is the time needed for one complete 
cycle. The frequency  of a body undergoing simple harmonic motion is the number of complete 
cycles per second it executes. It is easy to see, from their definitions, that frequency and period are 
inversely related. That is 

                                                                    [10.3a] 

                                                           [10.3b] 

The unit of frequency is hertz (Hz), where 1 Hz = 1 cycle per second (   ). Note that the frequency 
and period do not depend on the amplitude. Changing the amplitude of a simple harmonic oscillator 
does not affect its frequency.  

 

The angular frequency   of a simple harmonic motion is defined by 

   
  

 
                      [10.4] 

It has units of radians per second. It is a measure of how rapidly the oscillations are occurring; the 
more oscillations per unit time, the higher the value of  . The angular frequency   of the resulting 
simple harmonic motion is defined as 

  √             [10.5] 

From equation [10.5], we get 

              [10.6] 

Using equations [10.4] and [10.5], the period  and frequency   of the motion for the particle in 
simple harmonic motion can be expressed in terms of the mass m and spring constant k of the 
system as:  

   
  

 
   √            [10.7a] 

  
 

 
 

 

  
 

 

  
√          [10.7b] 

Equation [10.7] tells us that the greater the mass, the lower the frequency; and the stiffer the spring, 
the higher the frequency. This makes sense since a greater mass means more inertia and therefore a 
slower response (or acceleration); and larger k means greater force and therefore quicker response. 
The frequency   given in equation [10.7] at which a simple harmonic oscillator oscillates naturally is 
called its natural frequency (to distinguish it from a frequency at which it might be forced to oscillate 
by an outside force. 

Upon substituting equation [10.6] into equation [10.2], we get the expressions of the restoring force, 
F, and acceleration, a: 



General Physics Module Phys 1011 AAU 

  

Oscillations and Waves  243 

 

                  [10.8a] 

   
 

 
              [10.8b] 

That is, the acceleration of the block is proportional to its position, and the direction of the 
acceleration is opposite the direction of the displacement of the block from equilibrium position. 
Systems that behave in this way are said to exhibit simple harmonic motion. An object moves with 
simple harmonic motion whenever its acceleration is proportional to its position and is oppositely 
directed to the displacement from equilibrium. 

 

Example 10.1 

Two springs, one of force constant    and the other of force constant   , are connected end-to-end 
to a block of mass 0.33 kg that is set oscillating over a frictionless floor as shown in Figure 10.3. (a) 
Find the force constant k of the combination, (b) If    5      and          , find k. (c) What 
is the frequency of the oscillations? 

 

Solution 

(a) When a force F is applied to the combination, each spring is acted on by this force. Hence the 
respective elongations of the springs are:          and         and the total elongation 
of the combination is 

         
 

 1
 

 

 2
 

   1  2 

 1 2
.  

Since   
 1 2

  1  2 
     for the combination, where   is the effective force constant of the 

combination and is given by:                   .  

 

(b)   
               

           
 3 3    ; (c)  

 

  
√    

 

         
√3 3   33    5 33     

 

 

10.1.2 Energy of Simple Harmonic Oscillator 

Let us examine the mechanical energy of a system in which a particle undergoes simple harmonic 
motion, such as the block–spring system illustrated in Figure 10.4. Because the surface is frictionless, 
the system is isolated and we expect the total mechanical energy of the system to be constant. We 
assume a massless spring, so the kinetic energy of the system corresponds only to that of the block.  

If the block is displaced to its maximum position    , and released from rest, its initial 

acceleration,       
 

 
      , is also maximum and its velocity is zero. When the block 

passes through the equilibrium position    , its acceleration is zero. At this instant, its speed is a 

maximum because the acceleration changes sign and is given by          √   . Therefore, 

the maximum kinetic energy of the block occurs at    , as shown in Figure 10.5,  and is given  by: 
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            [10.9] 

The block then continues to travel to the left of the equilibrium position with a positive acceleration 

and finally reaches     , at which time its acceleration is       
  

 
      and its speed is 

again zero as discussed above. The block completes a full cycle of its motion by returning to the 
original position, again passing through x = 0 with maximum speed. Therefore, the block oscillates 
between the turning points   ± . In the absence of friction, this idealized motion will continue 
forever because the force exerted by the spring is conservative. Real systems are generally subject to 
friction, so they do not oscillate forever.  

 

The elastic potential energy stored in the spring for any elongation x and the kinetic energy of the 
particle as a function of time and position is shown in Figure 10.5. The maximum elastic potential 
energy stored in the spring occurs at   ±  and is given by: 

  
 

 
    

 

 
             [10.10] 

We see that K and U are always positive quantities or zero. The total mechanical energy of the 
simple harmonic oscillator is the sum of the kinetic and potential energies, 

             [10.11a] 

  
 

 
    

 

 
          [10.11b] 

That is, the total mechanical energy of a simple harmonic oscillator is a constant of the motion and is 
proportional to the square of the amplitude. 

  
 

 
    

 

 
    

 

 
    

 

 
                 [10.12] 

The total mechanical energy is equal to the maximum potential energy stored in the spring when 

   , that is   
 

 
   , because v = 0 at these points and there is no kinetic energy as shown in 

Figure 10.5. At the equilibrium position, where U = 0 because x = 0, the total energy is all in the form 

of kinetic energy, that is,   
 

 
     

  
 

 
     . From the first expression of equation [10.12], 

the instantaneous velocity of the bob as a function of position becomes: 

  ±√
 

 
        ± √             [10.13] 
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Example 10.2 

A block whose mass m is 680 g is fastened to a spring whose spring constant   is 65 N/m as shown in 
the Figure below. The block is pulled a distance      cm from its equilibrium position at     on 
a frictionless surface and released from rest at    .  

 

(a) What are the angular frequency, the frequency, and the period of the resulting motion? 

 

Solution 

The block–spring system forms a linear simple harmonic oscillator, with the block undergoing simple 
harmonic motion. The angular frequency is given by equation [10.5]: 

  √    √ 65         68      = 9 78      . The frequency is   
 

  
 

  7       

  
 

  56   . The period is   
 

 
 

 

    
   64   64    . 

 

(b) What is the amplitude of the oscillation?  

With no friction involved, the mechanical energy of the spring–block system is conserved. The block 
is released from rest 11 cm from its equilibrium position, with zero kinetic energy and the elastic 
potential energy of the system is a maximum. Thus, the block will have zero kinetic energy whenever 
it is again 11 cm from its equilibrium position, which means it will never be farther than 11 cm from 
that position. Its maximum displacement is 11 cm, that is,           . (Answer)  

 

(c) What is the maximum speed      of the oscillating block, and where is the block when it has 
this speed?  

The maximum speed is the velocity amplitude          9 78      s                s. This 
maximum speed occurs when the oscillating block is rushing through the origin.  

 

(d) What is the magnitude      of the maximum acceleration of the block? 

The magnitude      of the maximum acceleration is the acceleration amplitude          
 9 78                        . This maximum acceleration occurs when the block is at the 
ends of its path, where the block has been slowed to a stop so that its motion can be reversed. At 
those extreme points, the force acting on the block has its maximum magnitude. 

 

10.1.3 Comparing Simple Harmonic Motion with Uniform Circular Motion 

We can obtain an expression for the position of an object moving with simple harmonic motion as a 
function of time by considering the relationship between simple harmonic motion and uniform 
circular motion. Consider a particle located at point P on the circumference of a circle of radius A as 
in Figure 10.6a, with the line OP making an angle     with the x axis at    . We call this circle a 
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reference circle for comparing simple harmonic motion with uniform circular motion, and we choose 
the position of P at     as our reference position. If the particle moves along the circle with 
constant angular speed   until OP makes an angle   with the x axis as in Figure 10.6a, at some time 
    the angle between OP and the x axis is     . As the particle moves along the circle, the 
projection of P on the x axis, labelled point Q, moves back and forth along the x axis between the 
limits   ± . 

Notice that points P and Q always have the same x coordinate. From the right triangle OPQ, we see 
that this x coordinate is 

                    [10.14] 

This expression shows that the point Q moves with simple harmonic motion along the x axis. 
Therefore, the motion of an object described by the analysis model of a particle in simple harmonic 
motion along a straight line can be represented by the projection of an object that can be modelled 
as a particle in uniform circular motion along a diameter of a reference circle. 

Therefore, the angular speed   of P is the same as the angular frequency   of simple harmonic 
motion of Q along the x-axis. This geometric interpretation shows that the time interval for one 
complete revolution of point P on the reference circle is equal to the period of motion T for simple 
harmonic motion between   ±  of Q along the x-axis. In one complete revolution, point P rotates 
through an angle of    rad in a time equal to the period T. In other words, the motion repeats itself 
every T seconds. Note that the position x(t) of the particle must (by definition) return to its initial 
value at the end of a period. That is, if x(t) is the position at some chosen time t, then the particle 
must return to that same position at time    . Using equation [10.14] to express this condition, 
returning to the same position can be written as                        . The cosine function 
first repeats itself when its argument (the phase, remember) has increased by    rad, so that, 
            , and this means that      . Therefore, the angular speed   of P is given by 

  
  

  
 

  

 
           [10.4] 

which is similar to equation [10.4]. 

   

From the geometry of Figure 10.6b, we get 

     s         s            [10.15]  
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Because the relationship between linear and angular speed for circular motion is     , where r is 
radius of circle, the particle moving on the reference circle of radius A has a velocity of magnitude 
    . Using       into equation [10.15] or using equation [10.14] into equation [10.13], we 
get the expression of the velocity (v) and acceleration (a) as a function of time: 

                     s            [10.16a] 

                                 [10.16b] 

                   [10.16c] 

where        ,         A, A, called the amplitude, is simply the maximum value of the 
position of the particle in either the positive or negative x direction and is determined uniquely by 
the position and velocity of the particle at    . The position, x(t), velocity,    , and acceleration, 
a   , of a particle undergoing simple harmonic motion as a function of time are plotted in Figure 
10.7. 

 

Example 10.3  

Consider the spring–block system of example 10.2. 

(a) What is the velocity function     ? 

Solution 

Using the value of      in example 10.2 and the expression of velocity function      given by 
equation [10.16a]:           s                 s     9 8              s    9 8  . 

(b) What is the acceleration function     ? 

Solution 

Using the value of      in example 10.2 and the expression of acceleration      given by equation 
[10.16b]:             s                 s   9 8                  9 8  . 

 

10.1.4 The Simple Pendulum 

The simple pendulum is another mechanical system that exhibits periodic motion. It consists of a 
particle-like bob of mass m suspended by a light string of length L that is fixed at the upper end as 
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shown in Figure 10.8. The motion occurs in the vertical plane and is driven by the gravitational force. 
We shall show that, provided the angle   is small (less than about    ), the motion is very close to 
that of a simple harmonic oscillator. The forces acting on the bob are the tension force T exerted by 
the string and the gravitational force mg. The tangential component          of the gravitational 
force always acts toward    , opposite the displacement of the bob from the lowest position.  

 

Therefore, the tangential component is a restoring force, and we can apply Newton’s second law for 
motion in the tangential direction:  

 

                                                                    [10.17] 

 

where the negative sign indicates that the tangential force acts toward the equilibrium (vertical) 
position and  is the bob’s position measured along the arc. 

 

 

The angular frequency   of a simple pendulum is defined as: 

  √           [10.18] 

The period T of the motion of simple pendulum is 

  
  

 
   √            [10.19a] 

  
  2 

 2          [10.19b]      

In other words, the period and frequency of a simple pendulum depend only on the length L of the 
string and the acceleration due to gravity g. Because the period is independent of the mass, we 
conclude that all simple pendula that are of equal length and are at the same location (so that g is 
constant) oscillate with the same period. The simple pendulum can be used as a time keeper 
because its period depends only on its length and the local value of g by equation [10.19b]. It is also 
a convenient device for making precise measurements of the free-fall acceleration. Such 
measurements are important because variations in local values of g can provide information on the 
location of oil and other valuable underground resources.  

 

Example 10.4 
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(a) A pendulum clock is in an elevator that descends at a constant velocity. Does it keep correct 
time?  

(b) The same clock is in an elevator in free fall. Does it keep correct time?  

Solution 

(a) The motion of the pendulum bob is not affected by motion of its support at constant velocity, so 
the clock keeps correct time.  

(b) In free fall the pendulum's support has the same downward acceleration of g as the bob, so no 
oscillations occur and the clock does not operate at all. 

Example 10.5 

Using a small pendulum of length 0.171 m, a geophysicist counts 72.0 complete swings in a time of 
60.0 s. What is the value of g in this location? 

Solution 

First calculate the period by dividing the total elapsed time by the number of complete oscillations: 

That is   
    

                      
 

    

7   
   833 s .  

Now using equation [10.19b]:    
  2 

 2  
           7    

         2
 9 73     . 

 

10.2 Resonance 

The oscillations of a macroscopic oscillator decay over time because the energy leaks out into the 
surroundings. That is, the energy of a damped oscillator, an oscillator subjected to friction, decreases 
overtime because of energy loss due work done against friction. For an oscillation to be sustained, 
this energy loss must be balanced by the energy added to the oscillator. In other words, it’s possible 
to compensate for this energy loss by applying an external force that does positive work on the 
system. 

For example, suppose an object–spring system having some natural frequency of vibration    is 
pushed back and forth by a periodic force with frequency f, given by                as shown in 
Figure 10.9. The system vibrates at the frequency f of the driving force. This type of motion is 
referred to as a forced vibration. It's amplitude reaches a maximum when the frequency of the 
driving force  equals the natural frequency of the system   , called the resonant frequency of the 
system. Under this condition, the system is said to be in resonance. 

 

For example, we might pull the mass on the spring of Figure 10.1 back and forth at a frequency  . 
The mass then oscillates at the frequency   of the external force, even if this frequency is different 
from the natural frequency of the spring, which we will now denote by   , where         

√   . In a forced oscillation the amplitude of oscillation, and hence the energy transferred to the 

oscillating system, is found to depend on the difference between   and    aswell as on the amount 
of damping, reaching a maximum when the frequency of the external force equals the natural 
frequency of the system, that is, when     . The amplitude is plotted in Figure 10.10 as a function 
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of the external frequency  . The amplitude can become large when the driving frequency   is near 
the natural frequency,  ≈   , as long as the damping is not too large. When the damping is small, 
the increase in amplitude near      is very large (and often dramatic). This effect is known as 
resonance. The natural frequency    of a system is called it's resonant frequency. 

 

But we learned that a stretched string can vibrate in one or more of its natural modes. Here again, if 
a periodic force is applied to the string, the amplitude of vibration increases as the frequency of the 
applied force approaches one of the string’s natural frequencies of vibration. 

A simple example of resonance is a child being pushed on a swing, which is essentially a pendulum 
with a natural frequency that depends on its length. The swing is kept in motion by a series of 
appropriately timed pushes. For its amplitude to increase, the swing must be pushed each time it 
returns to the person’s hands. This corresponds to a frequency equal to the natural frequency of the 
swing. If the energy put into the system per cycle of motion equals the energy lost due to friction, 
the amplitude remains constant. 

 

 

10.3 Mechanical Waves 

10.3.1 Wave Types and Propagation of a Disturbance 

A wave is, in general, a disturbance that moves through a medium. A wave carries energy, but there 
is no transport of matter. A wave is thus described as the transfer of energy through space without 
the accompanying transfer of matter. All waves carry energy and momentum. The amount of energy 
transmitted through a medium and the mechanism responsible for the transport of energy differ 
from case to case. In a periodic wave, pulses of the same kind follow one another in regular 
succession. The world is full of waves: sound waves, waves on a string, seismic waves, and 
electromagnetic waves, such as visible light, radio waves, television signals, and x-rays. All these 
waves have as their source a vibrating object, so we can apply the concepts of simple harmonic 
motion in describing them. 

In the list of energy transfer, two mechanisms, mechanical waves and electromagnetic waves or 
radiation, depend on waves. By contrast, in another mechanism, matter transfer, the energy transfer 
is accompanied by a movement of matter through space with no wave character in the process. 
Electromagnetic waves can travel through a vacuum. Examples are light and radio waves. All 
mechanical waves require (1) some source of disturbance, (2) a medium containing elements that 
can be disturbed, and (3) some physical connection or mechanism through which adjacent portions 
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or elements of the medium can influence each other. Mechanical waves can be transverse waves or 
longitudinal waves.  

One way to demonstrate wave motion is to flick one end of a long string that is under tension and 
has its opposite end fixed as shown in Figure 10.11. In this manner, a single bump (called a pulse) is 
formed and travels along the string with a definite speed. Figure 10.11(a) the creation and 
propagation of the traveling pulse. The pulse has a definite height and a definite speed of 
propagation along the medium. As the pulse travels, each disturbed element of the string moves in a 
direction (y axis) that is perpendicular to the direction of propagation (x-axis). Notice that no part of 
the string ever moves in the direction of the propagation.  

 

A wave is a periodic disturbance traveling through a medium. If we were to move the end of the 
string up and down repeatedly, we would create a traveling wave, which has characteristics a pulse 
does not have as shown in Figure 10.11 (b). A traveling wave or pulse that causes the elements of 
the disturbed medium to move perpendicular to the direction of propagation is called a transverse 
wave. Therefore, in a transverse wave, the particles of the medium move back and forth 
perpendicular to the direction of the wave. Waves that travel down a stretched string when one end 
is shaken are transverse as shown in Figure 10.11. 

Another type of wave or pulse, one moving down a long, stretched spring as shown in Figure 10.12. 
The left end of the spring is pushed briefly to the right and then pulled briefly to the left. This 
movement creates a sudden compression of a region of the coils. The compressed region travels 
along the spring (to the right in Figure 10.12).  
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Notice that the direction of the displacement of the coils is parallel to the direction of propagation of 
the compressed region. A traveling wave or pulse that causes the elements of the medium to move 
parallel to the direction of propagation is called a longitudinal wave. Sound waves are another 
example of longitudinal waves. The disturbance in a sound wave is a series of high-pressure and low-
pressure regions that travel through air. 

A sinusoidal wave could be established on the rope in Figure 10.13 by shaking the end of the rope up 
and down in simple harmonic motion. This movement is the motion of the wave. If we focus on one 
element of the medium, such as the element at x = 0, we see that each element moves up and down 
along the y-axis in simple harmonic motion. This movement is the motion of the elements of the 
medium. It is important to differentiate between the motion of the wave and the motion of the 
elements of the medium.  

 

A point at which the displacement of the element from its normal position is highest is called the 
crest of the wave. The lowest point is called the trough. The distance from one crest to the next is 
called the wavelength   as shown in Figure 10.14b. More generally, the wavelength is the minimum 
distance between any two identical points on adjacent waves as shown in Figure 10.13 and in Figure 
10.14b. If you count the number of seconds between the arrivals of two adjacent crests at a given 
point in space, you measure the period T of the waves. In general, the period is the time interval 
required for two identical points of adjacent waves to pass by a point as shown in Figure 10.14a.   

The period of the wave is the same as the period of the simple harmonic oscillation of one element 
of the medium. The same information is more often given by the inverse of the period, which is 
called the frequency f. 

In general, the frequency of a periodic wave is the number of crests (or troughs, or any other point 
on the wave) that pass a given point in a unit time interval. The frequency of a sinusoidal wave is 
related to the period by the expression      . The maximum position of an element of the 
medium relative to its equilibrium position is called the amplitude A of the wave as indicated in 
Figure 10.14. 

 



General Physics Module Phys 1011 AAU 

  

Oscillations and Waves  253 

 

 

 

 

10.3.2 A Travelling Wave 

Waves travel with a specific speed, and this speed depends on the properties of the medium being 
disturbed. Imagine a source vibrating such that it influences the medium that is in contact with the 
source. Such a source creates a disturbance that propagates through the medium. If the source 
vibrates in simple harmonic motion with period T, sinusoidal waves propagate through the medium 
at a speed   as shown in Figure 10.15. By definition, the wave travels through a displacement    
equal to one wavelength   in a time interval    of one period T.  

 

 

Therefore, the wave speed, wavelength, and period are related by the expression 

  
  

  
 

 

 
           [10.20] 

We can express the wave function in a convenient form by defining two other quantities, the angular 
wave number k (usually called simply the wave number) and the frequency  : 

              [10.21] 

  
  

 
            [10.22] 

The mathematical representation of the traveling wave is given by the sinusoidal wave function 
y(x,t) given by: 

        s     ±             [10.23] 



General Physics Module Phys 1011 AAU 

  

Oscillations and Waves  254 

 

where   is the phase constant. This constant can be determined from the initial conditions. For a 
wave traveling to the right, we chose the (-) sign and for a wave traveling to the left, we chose the 
(+) sign. Using equations [10.20], [10.21] and [10.22], the wave speed   can also be expressed in the 
following alternative forms 

  
 

 
 

 

 
           [10.24] 

Examples: 

 a vibrating blade sends a sinusoidal wave down a string attached to the blade 

 a loudspeaker vibrates back and forth, emitting sound waves into the air  

 a guitar body vibrates, emitting sound waves into the air 

 a vibrating electric charge creates an electromagnetic wave that propagates into space at 
the speed of light 

 

Example 10.6 

A transverse wave traveling along an x axis has the form given in the Figure below. In (a) it gives the 
displacements of string elements (y) as a function of (x), all at time    . In (b) it gives the 
displacements of the element at     as a function of t. Find the values of the quantities  in 
equation [10.23], that is, the (a) amplitude (    ), (b) period (T), (c) wavelength ( ), (d) angular 
wave number k, (e) the angular frequency  , (f) phase constant ( ), (g) direction of propagation of 
the wave and (h) wave function y(x, t). 

 

Solution 

From the graph, we can determine 

(a)      3       

(b)          

(c)        . Now we can calculate the quantities  

(d)   
  

 
 

  

       
              

(e)   
  

 
 

  

       
              

(f) The value of    is set by the conditions at     at the instant    . From either figure we see 
that at that location and time,         .  Substituting these three values and also      3    

into equation [10.23], gives us        3      s          and thus       ( 
 

 
)  
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   73    . Note that this is consistent with the rule that on a plot of y versus x, a negative phase 
constant shifts the normal sine function rightward, which is what we see in Figure (a).  

(g) To find the direction, we apply a bit of reasoning to the figures. In the snapshot at     given in 
Figure (a), note that if the wave is moving rightward, then just after the snapshot, the depth of the 
wave at     should increase (mentally slide the curve slightly rightward). If, instead, the wave is 
moving leftward, then just after the snapshot, the depth at    should decrease. Now let’s check 
the graph in Figure (b). It tells us that just after    , the depth increases. Thus, the wave is moving 
rightward, in the positive direction of x, and we choose the minus sign in the wave equation. 

(h) The wave function for the wave is thus:         3      s                 73     , 
with x in meters and t in seconds. 

 

10.4 Standing Waves 

Standing wave, also called stationary wave, combination of two waves moving in opposite 
directions, each having the same amplitude and frequency. The phenomenon is the result of 
interference, that is, when waves are superimposed, their energies are either added together or 
cancelled out. In the case of waves moving in the same direction, interference produces a travelling 
wave; for oppositely moving waves, interference produces an oscillating wave fixed in space. A 
vibrating rope tied at one end will produce a standing wave, as shown in the Figure 10.16; the wave 
train, after arriving at the fixed end of the rope, will be reflected back and superimposed on itself as 
another train of waves in the same plane.  

Standing waves are waves which appear to be vibrating vertically without traveling horizontally. 
Created from waves with identical frequency and amplitude interfering with one another while 
traveling in opposite directions. At all times there are positions (N) along the rope, called nodes, at 
which there is no movement at all; there the two wave trains are always in opposition. On either 
side of a node is a vibrating antinode (A). The antinodes alternate in the direction of displacement so 
that the rope at any instant resembles a graph of the mathematical function called the sine. Nodes 
are thus positions on a standing wave where the wave stays in a fixed position over time because of 
destructive interference and antinodes are positions on a standing wave where the wave vibrates 
with maximum amplitude. Both longitudinal (e.g., sound) waves and transverse (e.g., water) waves 
can form standing waves.  

 

10.4.1 Standing Waves in a String 

Standing Wave harmonics: A wave that travels down a rope gets reflected at the rope’s end. If the 
end of the rope is free, then the wave returns right side up. If the end of the rope is fixed, then the 
wave will be inverted as shown in Figure 10.16. 

For a rope with two fixed ends, another wave travelling down the rope will interfere with the 
reflected wave. At certain frequencies, this produces standing waves where the nodes and antinodes 
stay at the same places over time. For all standing wave frequencies, the nodes and antinodes 
alternate with equal spacing. The lowest frequency (which corresponds with the longest wavelength) 
that will produce a standing wave has one “bump” along the string length L as shown in Figure 
10.17. This standing wave is called the fundamental frequency. Thus, the fundamental frequency is 
the lowest frequency of a standing wave that has the fewest number of nodes and antinodes, where 
there are two nodes and one antinode. 

https://www.britannica.com/science/interference-physics
https://www.britannica.com/science/oscillating-wave
https://www.britannica.com/science/seiche
https://www.britannica.com/science/node-physics
https://www.britannica.com/science/antinode


General Physics Module Phys 1011 AAU 

  

Oscillations and Waves  256 

 

             [10.24a] 

             [10.24b] 

 

 

 

If   is the speed of the wave along the string, then the fundamental frequency is given by 

   
 

 
 

 

  
          [10.25] 

That is, for the fundamental frequency of a standing wave between two fixed ends, the wavelength 
is double the length of the string. Standing waves on a string or rope of length L with both fixed and 
free end are shown in Figure 10.17. 

 

Each successive harmonic has an additional node and antinode. For the second harmonic, there are 
two “bumps”, for the third, there are three, and so on. Examples of the second harmonics are shown 
in Figure 10.18. For the second harmonic of a standing wave between two fixed ends, the 
wavelength is the length of the string and its frequency is twice the fundamental frequency. 

            [10.26] 

    
 

 
 

 

 
           [10.27] 

 

For the third harmonic of a standing wave between two fixed ends, the wavelength is two-thirds the 
length of the string and its frequency is triple the fundamental frequency. 

  3           [10.28] 

   
 

 
 

  

  
 3         [10.29] 
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Examples of the third harmonics are shown in Figure 10.19.  

 

A string has an infinite number of resonant frequencies. The nth harmonics are a standing wave that 
is a positive integer multiple of the fundamental frequency 

                                  [10.30] 

   
 

 
 

  

  
                       [10.31] 

where is a positive integer,        3 4    

 

10.4.2 Standing Waves in Air Columns 

The waves under boundary conditions model can also be applied to sound waves in a column of air 
such as that inside an organ pipe or a clarinet. Standing waves in this case are the result of 
interference between longitudinal sound waves traveling in opposite directions. 

In a pipe closed at one end, the closed end is a displacement node because the rigid barrier at this 
end does not allow longitudinal motion of the air. Because the pressure wave is 90° out of phase 
with the displacement wave, the closed end of an air column corresponds to a pressure antinode 
(that is, a point of maximum pressure variation). The open end of an air column is approximately a 
displacement antinode and a pressure node. We can understand why no pressure variation occurs at 
an open end by noting that the end of the air column is open to the atmosphere; therefore, the 
pressure at this end must remain constant at atmospheric pressure. 
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The first three normal modes of oscillation of a pipe open at both ends (a) and a pipe open at one 
end ony (b) are shown in Figure 10.20. For a pipe open at both ends, both ends are displacement 
antinodes (approximately) and for a pipe open at one end only, the open end is antinode where as 
the closed end is a node. 

 

In the first normal mode of a pipe pipe open at both ends, the standing wave extends between two 
adjacent antinodes, which is a distance of half a wavelength. Therefore, the wavelength is twice the 
length of the pipe, and the fundamental  frequency is  

                                     (pipe open at both ends)     [10.32a] 

                           4        (pipe open only at end)     [10.32b] 

More generally, the resonant frequencies for a pipe of length L with two open ends correspond to 
the wavelengths  

               for       3         [10.33]  

where n is called the harmonic number. Letting v be the speed of sound, because all harmonics are 
present for pipe open at both ends and because the fundamental frequency is given by the same 
expression as that for a string, we can express the natural frequencies of oscillation as  

   
 

 
 

  

  
        for        3 4 5    (pipe, two open ends)   [10.34] 

In a pipe open at both ends, the natural frequencies of oscillation form a harmonic series that 
includes all integral multiples of the fundamental frequency.  

 

More generally, the resonant frequencies for a pipe of length L with only one open end correspond 
to the wavelengths  

  4            for     3 5 7          [10.35]  

in which the harmonic number n must be an odd number. The resonant frequencies are then given 
by 

   
 

 
 

  

  
         for      3 5 7      (pipe, one open end)   [10.36] 

Note again that only odd harmonics can exist in a pipe with one open end. For example, the second 
harmonic, with    , cannot be set up in such a pipe. 

Example 10.7 

The Figure below shows a simple apparatus for demonstrating resonance in a tube. A long tube open 
at both ends is partially submerged in a beaker of water, and a vibrating tuning fork of unknown 
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frequency is placed near the top of the tube. The length of the air column, L, is adjusted by moving 
the tube vertically. The sound waves generated by the fork are reinforced when the length of the air 
column corresponds to one of the resonant frequencies of the tube. Suppose the smallest value of L 
for which a peak occurs in the sound intensity is 9.00 cm. (a) With this measurement, determine the 
frequency of the tuning fork. (b) Find the wavelength and the next two air-column lengths giving 
resonance. Take the speed of sound to be 343 m/s. 

 

Solution 

Once the tube is in the water, the setup is the same as a pipe closed at one end. For (a), equation 
[10.36] can used to find the frequency of the tuning fork. (b) The next resonance maximum occurs 
when the water level is low enough to allow a second node (Figure b), which is another half-
wavelength in distance. The third resonance occurs when the third node is reached, requiring yet 
another half-wavelength of distance. The frequency in each case is the same because it’s generated 
by the tuning fork. 

(a) Find the frequency of the tuning fork. Substitute    ,   343    , and    9  ×        

into equation [10.36]:    
  

  
 

 

  
 

       

       ×   2   
 953    . 

(b) Calculate the wavelength, using the fact that, for a tube open at one end,   4  for the 
fundamental.   4   4 9  ×           36   . Add a half-wavelength of distance to    to 

get the next resonance position:       
 

 
    9        8        7   . Add another half-

wavelength to    to obtain the third resonance position:       
 

 
    7       8    

   45   . This experimental arrangement is often used to measure the speed of sound, in which 
case the frequency of the tuning fork must be known in advance. 

 

10.5 The Doppler Effect 

If a car or truck is moving while its horn is blowing, the frequency of the sound you hear is higher as 
the vehicle approaches you and lower as it moves away from you. This phenomenon is one example 
of the Doppler effect. The same effect is heard if you’re on a motor cycle and the horn is stationary: 
the frequency is higher as you approach the source and lower as you move away. Although the 
Doppler effect is most often associated with sound, it’s common to all waves, including light. In 
deriving the Doppler effect, we assume the air is stationary and that all speed measurements are 
made relative to this stationary medium. In the general case, the speed of the observer   , the 
speed of the source,   , and the speed of sound v are all measured relative to the medium in which 
the sound is propagated. 
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Case 1: The Observer Is Moving Relative to a Stationary Source 

In Figure 10.21, an observer is moving with a speed of    toward the source (considered a point 
source), which is at rest (    ). We take the frequency of the source to be   , the wavelength of 
the source to be   , and the speed of sound in air to be  . If both observer and source are 
stationary, the observer detects    wave fronts per second. (That is, when       and     , the 
observed frequency    equals the source frequency   .) An observer moving with a speed    toward 
a stationary point source (S) hears a frequency    that is greater than the source frequency   .  

 

When moving toward the source, the observer moves a distance of     in t seconds. During this 
interval, the observer detects an additional number of wave fronts. The number of extra wave fronts 
is equal to the distance traveled,    , divided by the wavelength   : 

                               
   

  
                        [10.37] 

Divide this equation by the time t to get the number of additional wave fronts detected per second, 
      . Hence, the frequency heard by the observer is increased to 

                                                                                    [10.38] 

Substituting         into this expression for   , we obtain 

             (
    

 
)   (observer moving towards a stationary source)    [10.39] 

Therefore, an observer moving with a speed of    towards a stationary source hears a frequency    
that is higher than the source frequency    . 

 

When the observer is moving away from a stationary source (Figure 10.22), the observed frequency 
decreases. A derivation yields the same result as equation 10.39, but with      in the numerator. 
Thus, when the observer is moving away from the source, the frequency heard by the observer is 

             (
    

 
)     (observer moving away fron a stationary source)   [10.40] 
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Case 2: The Source Is Moving Relative to a Stationary Observer 

Now consider a source moving toward an observer at rest, as in Figure 10.23. Here, the wave fronts 
passing observer A are closer together because the source is moving in the direction of the outgoing 
wave. As a result, the wavelength    measured by observer A is shorter than the wavelength    of 
the source at rest. During each vibration, which lasts for an interval T (the period), the source moves 
a distance  

                   
  

  
         [10.41] 

and the wavelength is shortened by that amount. The observed wavelength is therefore given by 

                              [10.42] 

Because        , the frequency observed by A is 

   
 

  
 

 

        
 

 
 
  

 
  
  

 

        (
 

    
)    (source moving towards an observer at rest)    [10.43] 

Therefore, when a source is moving toward an observer at rest with a speed of   , the observer 
hears a frequency    that is higher than the source frequency    . 

 

As expected, the observed frequency increases when the source is moving toward the observer. 
When the source is moving away from an observer at rest, the observed frequency decreases and 
hence minus sign in the denominator of equation [10.43] must be replaced with a plus sign, so the 
observed frequency becomes 

          (
 

    
)     (source moving away from an observer at rest)  [10.44] 

For a source S moving with speed    toward stationary observer A and away from stationary 
observer B, observer A hears an increased frequency, and observer B hears a decreased frequency. 

 

Case 3: General Case 

When both the source and the observer are in motion relative to Earth, equations [10.39] and 
[10.44] can be combined to give the observed frequency. For an observer moving towards a source 
and a source moving toward an observer or detector, the observed frequency is: 

      (
    

    
)                                                [10.45a] 
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For an observer moving towards a source and a source moving away from an observer or detector, 
the observed frequency is: 

      (
    

    
)                                                           [10.45b] 

For an observer moving away from a source and a source moving toward an observer or detector, 
the observed frequency is: 

      (
    

    
)                                                            [10.45c] 

For an observer moving away from a source and a source moving way from an observer or detector, 
the observed frequency is: 

      (
    

    
)                                                             [10.45d] 

The general Doppler-effect equation can be written as 

        (
 ±  

 ±  
)                                                             [10.46] 

In this expression, the signs for the values substituted for    and    depend on the direction of the 
velocity. When the observer moves toward the source, a positive speed is substituted for   ; when 
the observer moves away from the source, a negative speed is substituted for   . Similarly, a 
positive speed is substituted for    when the source moves toward the observer, a negative speed 
when the source moves away from the observer. 

 

Example 10.8 

Bats navigate and search out prey by emitting, and then detecting reflections of, ultrasonic waves, 
which are sound waves with frequencies greater than can be heard by a human. Suppose a bat emits 
ultrasound at frequency     8  5      while flying with velocity    9       as it chases a 
moth that flies with velocity    8        both in the positive x-direction. (a) What frequency     
does the moth detect? (b) What frequency     does the bat detect in the returning echo from the 
moth?  

Solution 

The frequency is shifted by the relative motion of the bat and moth. Because they move along a 
single axis, the shifted frequency is given by the general Doppler equation [10.46]. Motion toward 
tends to shift the frequency up, and motion away tends to shift it down.  

(a) Detection by moth: Here, the detected frequency   , that we want to find is the frequency     
detected by the moth. On the right side, the emitted frequency    is the bat’s emission frequency 
    8  5     , the speed of sound is   343    , the speed    of the detector is the moth’s 
speed    8       , and the speed    of the source is the bat’s speed    9      . We have the 
speed of the moth (the detector) in the numerator of equation [10.46]. The moth moves away from 
the bat, which tends to lower the detected frequency and thus we use      in the numerator of 
equation [10.46] to make the numerator smaller. The bat moves toward the moth, which tends to 
increase the detected frequency and thus we use      in the denominator of equation [10.46] to 

make the denominator smaller. Therefore,        (
    

    
)   8  5      

                 

                 
 

8  767      8  8       

(b) Detection of echo by bat: In the echo back to the bat, the moth acts as a source of sound, 
emitting at the frequency     we just calculated. So now the moth is the source (moving away) and 
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the bat is the detector (moving toward). To find the frequency     detected by the bat, we write 
equation [10.46] as          

       (
    

    
)   8  5      

                

                 
 83         83         

Some moths evade bats by “jamming” the detection system with ultrasonic clicks.      

  

10.6 Chapter Summary 

 

10.7 Conceptual Questions                          

 

10.8 Problems  

1. A spring is cut into three equal parts. If its original force constant was k, what is the force 
constant of each new spring? 

2. A vertical spring 60 mm long resting on a table is compressed by 5.0 mm when a 200-g mass 
is placed on it. What is the force constant of the spring? 

3. If it is pressed down and released, with what period does the mass of problem 10.2 oscillate 
up and down? 

4. In Figure 10.24, two springs are joined and connected to a block of mass 0.245 kg that is set 
oscillating over a frictionless floor. The springs each have spring constant   643     . 
(a) What is the effective spring constant of the combination? (b) What is the frequency of 
the oscillations?  

 

5. A simple harmonic oscillator consists of a block attached to a spring with          . The 
block slides on a frictionless surface, with equilibrium point     and amplitude   
      . A graph of the block’s velocity v as a function of time t is shown in Figure 10.25. The 
horizontal scale is set by          . What are (a) the period of the SHM, (b) the block’s 
mass, (c) its displacement at    , (d) its acceleration at         , and (e) its maximum 
kinetic energy? 
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6. A block weighing 10.0 N is attached to the lower end of a vertical spring (           ), 
the other end of which is attached to a ceiling. The block oscillates vertically and has a 
kinetic energy of 2.00 J as it passes through the point at which the spring is unstretched. (a) 
What is the period of the oscillation? (b) Use the law of conservation of energy to determine 
the maximum distance the block moves both above and below the point at which the spring 
is unstretched. (These are not necessarily the same.) (c) What is the amplitude of the 
oscillation? (d) What is the maximum kinetic energy of the block as it oscillates? 

7. (a) What length pipe open at both ends has a fundamental frequency of 3 7 ×       ? 
Find the first overtone. (b) If the one end of this pipe is now closed, what is the new 
fundamental frequency? Find the first overtone. (c) If the pipe is open at one end only, how 
many harmonics are possible in the normal hearing range from 20 to 20 000 Hz?  
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11 Electromagnetism and Electronics 

Learning Outcome 

After completing this Chapter, students are expected to: 

 apply Coulomb’s law. 

 Describe the concept of electric field and electric field lines 

 Calculate the potential difference between two charged objects 

 Define current 

 Describe Ohm’s law 

 Calculate the electric power dissipated in a given resistor 

 Sate the two Kirchhoff’s rules 

 Differentiate resistors combination in parallel and series 

Introduction 

In this chapter, we discuss Coulomb’s law, which is the fundamental law of force between any two 
stationary charged particles. The concept of an electric field associated with charges is introduced 
and its effects on other charged particles described. Moreover, we define an electric potential — the 
potential energy per unit charge — corresponding to the electric field. We can define current and 
discuss some of the factors that contribute to the resistance to the flow of charge in conductors. The 
chapter presents the study and analyzes a number of simple direct-current circuits. The analysis is 
simplified by the use of two rules known as Kirchhoff’s rules, which follow from the principle of 
conservation of energy and the law of conservation of charge. Most of the circuits are assumed to be 
in steady state, which means that the currents are constant in magnitude and direction. 

 

11.1 Coulomb’s Law and Electric Fields  

11.1.1 Coulomb’s Law 

Learning outcome 

After completing this section, students are expected to: 

 Calculate the attractive or repulsive force between two point charges 

 Explain the relation between the force between two point charges and the separation 
between the charges 

 Recall the concept of inverse square law used earlier to use it in Coulomb’s law. 

 

In 1785, Charles Coulomb (1736–1806) experimentally established the fundamental law of electric 
force between two stationary charged particles, like the one shown in Fig.1.1.  

An electric force has the following properties: 

1. It is directed along a line joining the two particles and is inversely proportional to the square 
of the separation distance r, between them. 
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2. It is proportional to the product of the magnitudes of the charges, |q 1| and |q 2|, of the 
two particles.  

3. It is attractive if the charges are of opposite sign and repulsive if the charges have the same 
sign. 

 

 

 

From these observations, Coulomb proposed the following mathematical form for the electric force 
between two charges: 

The magnitude of the electric force F between charges q 1 and q 2 separated by a distance r is given 
by 

                                         )1.11(
||||

2

21

r

qqk
F e  

where ek  is a constant called the Coulomb constant. 

Equation 11.1, known as Coulomb’s law, applies exactly only to point charges and to spherical 
distributions of charges, in which case r is the distance between the two centers of charge. Electric 
forces between unmoving charges are called electrostatic forces. Moving charges, in addition, create 
magnetic forces. 

The value of the Coulomb constant in Equation 11.1 depends on the choice of units. The SI unit of 
charge is the coulomb (C). From experiment, we know that the Coulomb constant in SI units has the 
value, to five significant figures, of 

229109876.8  CNmke
, this can be approximated as 229100.9  CNmke

. 

Figure 11.2 shows the electric force of repulsion between two positively - charged particles. Like 

other forces, electric forces obey Newton’s third law; hence, the forces  ⃗   and  ⃗  are equal in 

magnitude but opposite in direction. (The notation  ⃗  denotes the force exerted by particle 1 on 

particle 2; likewise,  ⃗  is the force exerted by particle 2 on particle 1.) From Newton’s third law,  ⃗    

and  ⃗  are always equal regardless of whether 1q and 2q have the same magnitude. 

The Coulomb force is similar to the gravitational force. Both act at a distance without direct contact. 
Both are inversely proportional to the distance squared, with the force directed along a line 

connecting the two bodies. The mathematical form is the same, with the masses 1m  and 2m  in 

Newton’s law replaced by 1q  and 2q  in Coulomb’s law and with Newton’s constant G replaced by 

Coulomb’s constant ek . There are two important differences: (1) electric forces can be either 

attractive or repulsive, but gravitational forces are always attractive, and (2) the electric force 
between charged elementary particles is far stronger than the gravitational force between the same 
particles. 

 

 

 

Fig.11.1: two charged particles separated by a distance r 
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Examples: 

1. A charged particle A exerts a force of 2.62 N to the right on charged particle B when the 
particles are 13.7 mm apart. Particle B moves straight away from A to make the distance 
between them 17.7 mm. What vector force does particle B then exert on A? 

Solution: 

By Colum’s law the force the particles A and B exerted on each other is given by  

2

||||

r

qqk
F ABe  

Hence, we can determine the product of the two charges as  

  214

229

222

1044.5
100.9

1037.162.2
|||| C

CNm

mN

k

Fr
qq

e

AB











  

Now we can use this result to determine the force in new position. 

 
N

m

CCNm

r

qqk
F ABe 56.1

1077.1

1044.5100.9||||
22

214229

2











 

2. In figure 11.3 particle 3 lies on the x-axis between particle 1 (𝑞    6 ×       ) and 2 

(𝑞  3  ×       ). Particle 3 has charge Cq 19

3 1020.3  and is at a distance 
 

 
  from 

particle 1 (R is the total distance between particle 1 and 2 and it is 20 cm). What is the net 

electrostatic force netF ,1


on particle 1 due to particles 2 and 3? 

 

 
 

Figure 11.2 Two point charges 

separated by a distance r 

exert a force on each other 

given by Coulomb’s law. The 

force on  is equal in 

magnitude and opposite in 

direction to the force on . 

Fig. 11.3 
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Fig.11.4 

Solution:  

The presence of particle 3 does not alter the electrostatic force on particle 1 from particle 2. Thus, 

 ⃗   force still acts on particle 1. Similarly, the force  ⃗  that acts on particle 1 due to particle 3 

 ⃗  is not affected by the presence of particle 2. Because particles 1 and 3 have charge of opposite 
signs, particle 1 is attracted to particle 3. Thus, force is directed toward particle 3, as indicated in the 
free-body diagram Fig. 11.4.  

The magnitude of 
12F


  can be calculated as  

 ⃗   
  |𝑞 |𝑞 |

  
 

9  ×          3  ×   6 ×        

  ×        
 

    5 ×        

Similarly, the magnitude of  ⃗   can be calculated as  

 ⃗   
  |𝑞 |𝑞 |

  
 

9  ×          3  ×   6 ×        

   48 ×        
 

    5 ×        

 ⃗    ⃗    ⃗        5     5 ×        ̂
 9 ×        ̂ 

Exercises 

1. A 7.50-nC point charge is located 1.80 m from a 4.20-nC point charge. (a) Find the magnitude 
of the electric force that one particle exerts on the other. (b) Is the force attractive or 
repulsive? 

2. (a) Find the magnitude of the electric force between a    Na+ ion and a     ion separated 
by 0.50 nm. (b) Would the answer change if the sodium ion were replaced by     and the 
chloride ion by   ? Explain.   

3. (a) Two protons in a molecule are 3 8 ×       apart. Find the magnitude of the electric 
force exerted by one proton on the other. (b) State how the magnitude of this force 
compares with the magnitude of the gravitational force exerted by one proton on the other. 
(c) What If? What must be a particle’s charge-to-mass ratio if the magnitude of the 
gravitational force between two of these particles is equal to the magnitude of electric force 
between them?  

4. Three point charges are arranged as shown in Fig. 11.5.  Find (a) the magnitude and (b) the 
direction of the electric force on the particle at the origin. 

 

 

 

FiG.11.5 
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11.1.2 Electric Fields   

Learning Outcome 

After completing this section, students are expected to: 

 Specify the direction of the electric field from charged object. 

 Identify the point where electric field strength equals zero between two charged particles 

 Calculate the electric field strength for point charge 

 

An electric field is a region around a charged object. Eelectric field exerts an electric force on any 
other charged object within the field. This differs from the Coulomb’s law concept of a force exerted 
at a distance in that the force is now exerted by something — the field — that is in the same location 
as the charged object. 

Figure 11.6 shows an object with a small positive charge 0q  placed near a second object with a 

much larger positive charge Q  . 

 

The electric field E


 produced by a charge Q  at the location of a small “test” charge 0q  is defined as 

the electric force F


 exerted by Q  on 0q  divided by the test charge 0q  

                                            )2.11(
0q

F
E



  

The SI unit of electric field strength is N/C. 

When a positive test charge is used, the electric field always has the same direction as the electric 
force on the test charge, which follows from Equation 11.2. Hence, in Figure 11.6, the direction of 
the electric field is horizontal and to the right. The electric field at point A in Figure 11.7a is vertical 
and downward because at that point a positive test charge would be attracted toward the negatively 
- charged sphere. 

 

Once the electric field due to a given arrangement of charges is known at some point, the force on 
any particle with charge q  placed at that point can be calculated from a rearrangement of Equation 

11.2:  

                                       )3.11(0 EqF


  

 

Fig. 11.6: A small object with a positive charge 

placed near an object with a larger positive charge  

is subject to an electric field  directed as shown. The 

magnitude of the electric field at the location of is 

defined as the electric force on  divided by the 

charge q0. 
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As shown in Figure 11.8, the direction of E


 is the direction of the force that acts on a positive test 

charge 0q  placed in the field. We say that an electric field exists at a point if a test charge at that 

point is subject to an electric force. 

 

 

 

 

  

 

 

 

 

 

Consider a point charge q  located a distance r  from a test charge 0q . According to Coulomb’s law, 

the magnitude of the electric force of the charge q  on the test charge 0q is 

                                   )4.11(
||||

2

0

r

qq
kF e


 

Because the magnitude of the electric field at the position of the test charge is defined as  ⃗⃗   ⃗ 𝑞 , 

we see that the magnitude of the electric field due to the charge q  at the position of 0q  is 

                                           )5.11(
||

2r

q
kE e


 

Examples  

1. A small object of mass g80.3 and charge C0.18 is suspended motionless above the ground 

when immersed in a uniform electric field perpendicular to the ground. What is the magnitude 
and direction of the electric field? 

Solution:  

Fig. 11.7: (a) The electric field at A due to 
the negatively – charged sphere is 
downward, toward the negative charge. 
(b) The electric field at P due to the 
positively – charged conducting sphere is 
upward, away from the positive charge. 
(c) A test charge 𝑞  placed at P will cause 
a rearrangement of charge on the sphere 
unless 𝑞  is negligibly small compared 
with the charge on the sphere. 

Fig. 11.8 A test charge at P is a distance  from a point charge . 
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Since the object is motionless and suspended above the ground, the gravitational force mg of the 

object must be balanced by the electrostatic force on the object.  

NmskggF

ymgFF

e

ge

323 10724.38.9108.3,||

ˆ

 






 

Hence  

yCN
C

N

q

F
E ˆ/101.2

108.1

10724.3 2

5

3













 

2. Four point charges are located at the corners of a square. Each charge has magnitude nC2.3

and the square has sides of length 2.00 cm. Find the magnitude of the electric field at the center 
of the square if (a) all of the charges are positive and (b) three of the charges are positive and 
one is negative. 

Solution:  

a) Let represent the problem graphically as shown in Fig. 11.9 and point P is the center of the 

square. The distance from pint P to any chare at the corner of the square is  √     As all 
charges are positive, the electric field due to any charge is away from the charge and this can be 
represented by the free body diagram as shown.  All fields lie along the diagonal of the square 
that makes 450 to the horizontal. 

 

 
CN

CCNm

r

qk
EEEE e /106.3

1022

102.3100.9||
|||||||| 4

2
2

9229

24321 

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
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However, 
1E


and 3E


 are opposite in direction. Similarly, 

2E


and 
4E


are also opposite in 

direction. Hence, the net electric field at the center of a square due to the four charges located 
at the edge of the square is zero.  

b) Now let in the above arrangement 1q  is negative and the rest three charges are positive. In this 

case the direction of the electric field due to 1q ( 
1E


) is changed and directed along the 

direction 3E


.  There is no change in magnitude of all four fields. With the same reasoning 
2E



and 
4E


cancel each other.  

Therefore, the net field at point P for the present case is  

CNCNEEE /102.7/106.32 44

31 


, that make  450 with positive x-axis. 

P 

 

  

 

 

 

 

 

Fig.11.9 
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Exercises  

1. Two small beads having positive charges qq 31   and qq 2 are fixed at the opposite ends 

of a horizontal insulating rod of length md 50.1 . The bead with charge 1q  is at the origin. 

As shown in Figure Fig.11.10, a third small charged bead is free to slide on the rod. At what 
position x is the third bead in equilibrium? 

 

2. Figure 11.11 shows how the three particles are fixed. The particles have charges 

eqq  21  and eq 23  . Distance ma 00.6 . What are the (a) magnitude and (b) 

direction of the net electric field at point P due to the particles? 

 

3. Three charges are at the corners of an equilateral triangle, as shown in figure 11.12. 
Calculate the electric field at a point midway between the two charges on the x - axis. 

 

4. A helium nucleus of mass kgm 271064.6   and charge C191041.6   is in a constant 

electric field of magnitude CNE /100.2 8  pointing in the positive x - direction. 

Neglecting other forces, calculate (a) the nucleus’ acceleration and (b) its displacement after 
3.00 s if it starts from rest. 

5. In figure 11.13, determine the point (other than infinity) at which the total electric field is 
zero. 

 

 

Fig. 11.10 

Fig. 11.11 

Fig. 11.12 

Fig.11.13 
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11.2 Electric Potential and Electric potential Energy of point charge 

Learning outcome 

After completing this section, students are expected to: 

 Describe electric potential. 

 Understand the relation between electric field and electric potential. 

 Define electrical potential energy 

 Differentiate between electric potential and the electric potential energy. 

 

The electric potential created by a point charge q at any distance r from the charge is given by 

                     )6.11(
00 q

PE

q

W
VOr

r

qk
V e 


   

Equation 11.14 shows that the electric potential, or work per unit charge, required to move a 
positive test charge in from infinity to a distance r  from a positive point charge q increases as the 
test charge moves closer to q. A plot of Equation 11.6 in Figure 11.14 shows that the potential 

associated with a point charge decreases as r/1  with increasing r , in contrast to the magnitude of 

the charge’s electric field, which decreases as 2/1 r . 

 

 

The electric potential of two or more charges is obtained by applying the superposition principle: the 
total electric potential at some point P due to several point charges is the algebraic sum of the 
electric potentials due to the individual charges. 

If 1V is the electric potential due to charge 1q  at a point P (Fig. 11.15a), the work required to bring 

charge 2q from infinity to P without acceleration is 12Vq . By definition, this work equals the 

potential energy PE  of the two particle system when the particles are separated by a distance r  
(Fig. 11.15b). 

We can therefore express the electrical potential energy of the pair of charges as 

                                         )7.11(/2121 rqqkqVPE e  

If the charges are of the same sign, PE is positive. This is because like charges repel each other, 
positive work must be done on the system by an external agent to force the two charges near each 
other. Conversely, if the charges are of opposite sign, the force is attractive and PE is negative. This 

Figure 11.14 Electric field and electric 
potential versus distance from a point 
charge of 1.11 3 10210 C. Note that V is 
proportional to 1/r, whereas E is 
proportional to 1/r 2. 
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means that negative work must be done to prevent unlike charges from accelerating toward each 
other as they are brought close together. 

 

 
 

Examples 

1. Electrons are continually being knocked out of air molecules in the atmosphere by cosmic-
ray particles coming in from space. Once released, each electron experiences an electric 
force due to the electric field that is produced in the atmosphere by charged particles 

already on Earth. Near Earth’s surface the electric field has the magnitude CNE /150


 

and is directed down ward. What is the change PE in the electric potential energy of a 
released electron when the electric force causes it to move vertically upward through a 
distance md 520 (Fig. 11.16)? Through what potential change does the electron move? 

 

 

Solution:  

dFW


.  

The electrostatic force  EeEqF


  

Where, the charge q in this case is the charge carried by electron e with negative sign. Moreover, 

negative charge. 

.102.1180cos520/150106.1(cos. 14019 JmCNCqEddEqW   


 

The change in potential energy equals the negative of the work done on the charge. 

That is .102.1 14 JWPE   

 

Figure 11.15 (a) The electric potential 𝑉 at P due to the point charge 𝑞  is 
𝑉  𝑘𝑒𝑞  𝑟. (b) If a second charge, 𝑞 , is brought from infinity to P, the 
potential energy of the pair is 𝑃𝐸  𝑘𝑒𝑞 𝑞  𝑟  

Fig. 11.16 An electron in the atmosphere is 

moved upward through displacement by an 

electric force  due to an electric field . 
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2. A particular 12 V car battery can send a total charge of hA.0.84 (ampere-hours) through a circuit, 

from one terminal to the other. (a) How many coulombs of charge does this represent (b) If this 
entire charge undergoes a change in electric potential of 12 V, how much energy is involved? 

Solution:  

a) CCsAhAtIQ 55 100.310024.33600840.184   

b) JVCVQPE 65 106.30.12.100.3.   

 

3. The two charges in Figure P11.17 are separated by cmd 0.2 . Find the electric potential at (a) 

point A and (b) point B, which is halfway between the charges. 

 

Solution: 

a) As the electric potential is a scalar quantity, we have not bother about the direction, but the 
sign of the charge matters.  

Applying equation 911.6), 

  .0.54101527
100.2

100.9 9

2

229

2

2

1

1 VC
m

CNm

r

qk

r

qk
V ee 




 





 

b)   .0.108101527
100.1

100.9

2/2/

9

2

229

21 VC
m

CNm

d

qk

d

qk
V ee 




 





 

4. The electric potential difference between the ground and a cloud in a particular thunderstorm is 
   ×     . In the unit electron-volts, what is the magnitude of the change in the electric 
potential energy of an electron that moves between the ground and the cloud? 

Solution 

The change in the potential energy is  

JCVVePE 10199 106.1106.1.100.1    

But, JeV 19106.11   

Hence, eVeV
J

J
PE 9

19

10

100.11
106.1

106.1











 

Exercises 

1. Consider a charge 1q (+5.0μC) fixed at a site with another charge 𝑞  (charge +3.0μC, mass 

6.0μg) moving in the neighboring space. (a) Evaluate the potential energy of 𝑞  when it is 4.0 
cm from𝑞 . (b) If 𝑞  starts from rest from a point 4.0 cm from 𝑞 , what will be its speed when it 
is 8.0 cm from 𝑞 ? (Note: Q1 is held fixed in its place.) 

Fig.11.17 
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2. Two charges 𝑞  (+2.00μC) and 𝑞  (+2.00μC) are placed symmetrically along the x-axis at 
x=±3.00cm. Consider a charge 𝑞  of charge +4.00μC and mass 10.0 mg moving along the y-axis. 
If Q3 starts from rest at y=2.00cm, what is its speed when it reaches y=4.00cm? 

3. To form a hydrogen atom, a proton is fixed at a point and an electron is brought from far away 
to a distance of   5 9 ×       , the average distance between proton and electron in a 
hydrogen atom. How much work is done? 

4. An evacuated tube uses an accelerating voltage of 40 kV to accelerate electrons to hit a copper 
plate and produce X-rays. Non-relativistically, what would be the maximum speed of these 
electrons? 

5.  (a) Find the electric potential, taking zero at infinity, at the upper right corner (the corner 
without a charge) of the rectangle in Figure P11.18. (b) Repeat if the 𝑞       charge is 
replaced with a charge of 𝑞        . 

 

 

11.3 Current, resistance and Ohm’s Law 

11.3.1 Current 

Learning outcome 

After completing this section, students are expected to: 

 Define conventional current. 

 Apply the definition of current to solve related problems. 

 Describe the motion of conduction electrons in a conductor. 

 Draw simple circuit diagrams indicating current by arrows. 

 

The current is the rate at which charge flows through a surface of conductor.  Suppose    is the 

amount of charge that flows through an area A in a time interval t  and that the direction of flow is 
perpendicular to the area. Then the average current     is equal to the amount of charge divided by 
the time interval: 

                                              )8.11(
t

Q
I




  

The SI unit of current is Ampere (A). sCA 1/11   

When charges flow through a surface of a conductor, they can be positive, negative, or both. The 
direction of conventional current is the direction positive charges flow. In a common conductor such 

Fig. 11.18 
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as copper, the current is due to the motion of negatively charged electrons, so the direction of the 
current is opposite the direction of motion of the electrons. On the other hand, for a beam of 
positively charged protons in an accelerator, the current is in the same direction as the motion of the 
protons. Moving charges, whether positive or negative, are referred to as charge carriers. 

 

11.3.2 Resistance and Ohm’s Law 

Learning outcome:  

After completing this section, students are expected to 

 Apply Ohm’s law to calculate the current in a give.  

 States Ohm’s law  

 

When a voltage (potential difference)    is applied across the ends of a metallic conductor as in 
Figure 11.19, the current in the conductor is found to be proportional to the applied voltage.  If the 
proportionality holds, we can write      , where the proportionality constant R is called the 
resistance of the conductor. In fact, we define the resistance as the ratio of the voltage across the 
conductor to the current it carries: 

                                      )9.11(
I

V
R


  

The unit of resistance is Ohm (Ω). 

 

 

For many materials, including most metals, experiments show that the resistance remains constant 
over a wide range of applied voltages or currents. This statement is known as Ohm’s law. 

                              )10.11(IRV   

R is independent of the potential drop across the resistor and the current I flow through the 
resistor. A resistor is a conductor that provides a specified resistance in an electric circuit.  Ohm’s law 
is an empirical relationship valid only for certain materials. Materials that obey Ohm’s law, and 
hence have a constant resistance over a wide range of voltages, are said to be ohmic. Materials 
having resistance that change with voltage or current are nonohmic. Ohmic materials have a linear 
current – voltage relationship over a large range of applied voltages.  

 

Fig. 11.19:  A uniform conductor of length 

and cores sectional area . The current is 
proportional to the potential difference  
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Examples 

1. During the 4.0 min a 5.0 A current is set up in a wire, how many (a) coulombs and (b) 
electrons pass through any cross section across the wire’s width? 

Solution: 

a) bUsing equation (11.8), CsAtIQ 12006040.5   

b) The charge that one electron carries is .106.1 19 C  The number of electron in 1200 C can 

be determined by dividing this amount of charge with the number of charges in one 
electron.  

Hence, 2119 105.7106.1/1200/   CCeQNNeQ  

2. A typical lightning bolt may last for 0.200 s and transfer 20100.1  electrons. Calculate the 
average current in the lightning bolt. 

Solution:  

First find the amount of charge contained in 20100.1  electrons. 

That is .16106.1100.1 1920 CCQNeQ    

.802.0/16/ AACtQI   

3. An electric heater carries a current of 13.5 A when operating at a voltage of V2102.1  . 

What is the resistance of the heater?  

Solution:  




 9.8
5.13

102.1 2

A

V

I

V
R  

4. How long does it take electrons to get from a car battery to the starting motor? Assume the 
current is 300 A and the electrons travel through a copper wire with cross-sectional area 

221.0 cm  and length m85.0 .The number of charge carriers per unit volume is 
3281049.8  m . 

Solution:  

Let first calculate the number of charge carriers. The number of charge carries can be 
obtained by multiplying the number of charge carriers per unit volume with the volume of 
copper wire. The volume of the copper wire is equal to the product of cross-sectional area 
and length. 

.1002.1105.8102.185.012.0 351252 mmmmcmV    

235328 107.81002.11049.8  mVnN  

Next determine the charged transferred .Q  

.1039.1106.1107.8 51923 CNeQ    

Hence, the time it take to travel through the sated length is 

sACIQt 35 1062.4300/1039.1/    
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Exercises  

1. A person notices a mild shock if the current along a path through the thumb and index finger 
exceeds A0.80 . Compare the maximum possible voltage without shock across the thumb 

and index finger with a dry - skin resistance of  5100.4  and a wet - skin resistance of

k0.2 .  

2. Nichrome wire of cross - sectional radius 0.791 mm is to be used in winding a heating coil. If 

the coil must carry a current of 9.25 A when a voltage of V2102.1  is applied across its 

ends, find the required resistance of the wire.  

3. The current supplied by a battery in a portable device is typically 0.15 A. Find the number of 
electrons passing through the device in one hour. 

4. A rectangular block of copper has sides of length 10.0 cm, 20.0 cm, and 40.0 cm. If the block 
is connected to a 6.0 V source across two of its opposite faces, what are (a) the maximum 
current and (b) the minimum current the block can carry? 

5. The human body can exhibit a wide range of resistances to current depending on the path of 
the current, contact area, and sweatiness of the skin. Suppose the resistance across the 

chest from the left hand to the right hand is  6100.1  (a) how much voltage is required to 

cause possible heart fibrillation in a man, which corresponds to A5.0 of direct current? (b) 

Why should rubber - soled shoes and rubber gloves be worn when working around 
electricity? 

6. A fuse in an electric circuit is a wire that is designed to melt, and thereby open the circuit, if 
the current exceeds a predetermined value. Suppose that the material to be used in a fuse 

melts when the current density rises to 2/440 cmA . What diameter of cylindrical wire 

should be used to make a fuse that will limit the current to 0.50 A? 

7. A charged belt, 50 cm wide, travels at 30 m/s between a source of charge and a sphere.The 

belt carries charge into the sphere at a rate corresponding to A100 .  Compute the surface 

charge density on the belt. 

8. A voltmeter connected across the terminals of a tungsten filament light bulb measures 
V115  when an ammeter in line with the bulb registers a current of A522.0 . Find the 

resistance of the light bulb. 

 

11.4 Electrical Energy and Power 

Learning outcome:  

After completing this section, students are expected to: 

 Explain how conduction electrons in a circuit lose energy in a resistive device. 

 Define and apply the concept of electrical power. 

 Understand the relationships between power, current, voltage, and resistance. 

 Explain how conservation of energy is used in simple circuit analysis. 
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Figure 11.20 shows a circuit consisting of a battery B that is connected by wires, which we assume 
have negligible resistance, to an unspecified conducting device. The device might be a resistor, a 
storage battery (a rechargeable battery), a motor, or some other electrical device. The battery 

maintains a potential difference of magnitude V across its own terminals and thus (because of the 
wires) across the terminals of the unspecified device, with a greater potential at terminal a  of the 

device than at terminalb .  

Because there is an external conducting path between the two terminals of the battery, and because 
the potential differences set up by the battery are maintained, a steady current I  is produced in the 

circuit, directed from terminal a  to terminalb . The amount of charge Q that moves between 

those terminals in time interval t  is equal to tI .This charge Q  moves through a decrease in 

potential of magnitudeV , and thus its electric potential energy decreases in magnitude by the 
amount 

)11.11(tVIQVPE   

 

The principle of conservation of energy tells us that the decrease in electric potential energy from 

terminal a  to terminal b is accompanied by a transfer of energy to some other form. The power P 
associated with that transfer is the rate of transfer tPE  / , which is given by Eq. (11.11) as  

)12.11()(// transferenergyelectricalofrateVIttVItPEP   

Moreover, this power   is also the rate at which energy is transferred from the battery to the 
unspecified device. If that device is a motor connected to a mechanical load, the energy is 
transferred as work done on the load. If the device is a storage battery that is being charged, the 
energy is transferred to stored chemical energy in the storage battery. If the device is a resistor, the 
energy is transferred to internal thermal energy, tending to increase the resistor’s temperature. The 
SI unit of power is Watt (W).         . 

For a resistor or some other device with resistance R, we can combine the equation of resistance 
(Eq. 11.9) and Eq. (11.12) to obtain, for the rate of electrical energy dissipation due to a resistance, 
either 

              
)13.11()(/2

2

ndissipatioresistiveRVP

orRIP




 

Note:      applies to electrical energy transfers of all kinds;       and        apply only to 
the transfer of electric potential energy to thermal energy in a device with resistance. 

 

  

 

 

 

 

Fig. 11.20: A battery B sets up 
a current  in a circuit 
containing an unspecified 
conducting device. 
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Examples: 

1. In Fig. 11.21a, a 0.20  resistor is connected to a battery. Figure 11.21b shows the increase 

of thermal energy thE  in the resistor as a function of time t. The vertical scale is set 

by        5  , and the horizontal scale is set by stS 0.4 .What is the electric potential 

across the battery? 

 

Solution: 

The slope of the graph provides the power lost in heating effect. 

W
s

mJ

ss

mJmJ
P 41025.6

20

5.12

00.45

05.25 



  

Hence, power lost in heating the resistor is  

VVPRVRVP .112.0102025.6/ 22    

2. Thermal energy is produced in a resistor at a rate of 100 W when the current is 3.00 A. What is 
the resistance? 

Solution:  

 11.11)0.3/(0.100/ 222 AWIPRRIP  

3. A       potential difference is applied to a space heater whose resistance is  4    when hot. 
(a) At what rate is electrical energy transferred to thermal energy? (b) What is the cost for 5.0 h 
at   5          ? 

Solution:  

a) .157.1280.14/)120(/ 22 kWWVRVP   

b) 
 

centshkWhkWcents

hkWinusedenergytotalhkWratetEnergy

5.50.5.1./5.1

../cos




 

4. A portable coffee heater supplies a potential difference of 12.0 V across a Nichrome heating 
element with a resistance of      (a) Calculate the power consumed by the heater. (b) How 
many minutes would it take to heat 1.00 kg of coffee from 20.0°C to 50.0°C with this heater? 
Coffee has a specific heat of 4 184 J/(kg . °C). Neglect any energy losses to the environment. 

Fig. 11.21 
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Fig. 11.22 

 

Solution:  

a) The power consumed by the heater is .2.70.2/)120(/ 22 kWVRVP   

b) Neglecting the energy loss to the environment the energy lost by the heater was equals to 
energy gained by coffee.  

Hence, energy lost by heater tPE .  

And energy gaining by the coffee is 
TcMetemperaturinchangeMmascheatSpecifieacE  )()(  

Equating the two equations will give us,   

.43.17
102.7

300.11484
/.

3

01

s
W

CkgCkgJ
PTCMtTcMtP 






 

 

5. An electric utility company supplies a customer’s house from the main power lines (120.0 V) 

with two copper wires, each of which is 50.0 m long and has a resistance of 108.0  per 

300.0 m (a) Find the potential difference at the customer’s house for a load current of 110.0A. 
For this load current, find (b) the power delivered to the customer. 

Solution:   

a) Let first calculate the potential drop in a given length of copper wire.  

In a single wire, the potential drop equals   

       5   3    ×     8 ×          98     

The potential drop in both wires (pair) is  ×   98  3 96  

The potential difference        3 96    6  4 ≈   6   

b)            ×   6    76      8    

 

Exercise  

1. A certain brand of hot-dog cooker works by applying a potential difference of 120 V across 
opposite ends of a hot dog and allowing it to cook by means of the thermal energy 
produced. The current is 10.0 A, and the energy required to cook one hot dog is 60.0 kJ. If 
the rate at which energy is supplied is unchanged, how long will it take to cook three hot 
dogs simultaneously? 

2. In Fig. 11.22, a battery of potential difference         is 
connected to a resistive strip of resistance  6   . When an 
electron moves through the strip from one end to the other, 
(a) in which direction in the figure does the electron move, (b) 
how much work is done on the electron by the electric field in 
the strip, and (c) how much energy is transferred to the 
thermal energy of the strip by the electron? 

3. The heating element of a coffeemaker operates at 120. V and 
carries a current of 2.00 A. Assuming the water absorbs all the energy converted by the 
resistor, calculate how long it takes to heat 0.500 kg of water from room temperature 
(23.0°C) to the boiling point. 
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4. Batteries are rated in terms of ampere - hours (A .h). For example, a battery that can deliver 
a current of 3.0 A for 5.0 h is rated at 15 A. h. (a) What is the total energy, in kilowatt - hours, 
stored in a 12 - V battery rated at 55 A . h? (b) At 3.6 cents per kilowatt-hour, what is the 
value of the electricity that can be produced by this battery? 

5. The potential difference across a resting neuron in the human body is about 75.0 mV and 
carries a current of about 0.200 mA. How much power does the neuron release? 

6. Two wires A and B made of the same material and having the same lengths are connected 
across the same voltage source. If the power supplied to wire A is three times the power 
supplied to wire B, what is the ratio of their diameters? 

7. A 120 V potential difference is applied to a space heater that dissipates 500 W during 
operation. (a) What is its resistance during operation? (b) At what rate do electrons flow 
through any cross section of the heater element? 

8. An 18.0 W device has 9.00 V across it. How much charge goes through the device in 4.00 h? 

9. A resistor with a potential difference of 200 V across it transfers electrical energy to thermal 
energy at the rate of 3000W.What is the resistance of the resistor? 

10. A 2.0 kW heater element from a dryer has a length of 80 cm. If a 10 cm section is removed, 
what power is used by the now shortened element at 120 V? 

 

11.5 Equivalent Resistance and Kirchhoff’s law 

Learning outcome:  

After completing this section, students are expected to: 

 Apply Kirchhoff’s laws to complex circuits to find current values and equivalent resistors. 

 Apply the resistance and emf rules 

 Calculate the equivalent of series resistors. 

 Calculate the potential difference between any two points in a circuit. 

 

11.5.1 Sources of electromotive forces (emf) 

A source of emf can be thought of as a “charge pump” that forces electrons to move in a direction 
opposite the electrostatic field inside the source. The emf   of a source is the work done per unit 
charge; hence, the SI unit of emf is the volt.  

In Fig. 11.23b a positive charge moving through the battery from a to b. As the charge passes from 
the negative to the positive terminal of the battery, the potential of the charge increases by  .  As 
the charge moves through the resistance r , however, its potential decreases by the amount Ir , 

where I  is the current in the circuit. The terminal voltage of the battery,         , is therefore 
given by 

 

                                           )13.11(IrV    
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From this expression, we see that   is equal to the terminal voltage when the current is zero, called 

the open - circuit voltage. By inspecting Figure 11.23b, we find that the terminal voltage V  must 
also equal the potential difference across the external resistance R, often called the load resistance; 

that is, IRV  . Combining this relationship with Equation 11.13, we arrive at 

                                                )14.11()( rRIIrIR   

Solving for the current  

                                                     )15.11(
)( rR

I





 

Multiplying equation (11.14) by I we obtain  

                     )16.11(22 rIRII   

This equation tells us that the total power output I  of the source of emf is converted at the rate

RI 2   at which energy is delivered to the load resistance, plus the rate rI 2  at which energy is 

delivered to the internal resistance. Again, Rr  , most of the power delivered by the battery is 
transferred to the load resistance. 

Examples 

1. A battery having an emf of 9     delivers   7   when connected to a 7     load. 
Determine the internal resistance of the battery.  

Solution:  

R
II

IR
rIrIR 





  







92.40.72
1017.1

0.9
1 A

V
r  

2. A battery with a       internal resistance supplies  5    of total power with a 9    
terminal voltage. Determine (a) the current   and (b) the power delivered to the load 
resistor. 

Solution:  

 10.0)(0.15 222 IIRIWrIRII  

Fig. 11 23 (a) A circuit consisting of 

a resistor connected to the 

terminals of a battery. (b) A circuit 

diagram of a source of emf 

having internal resistance r 

connected to an external resistor R. 
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Where VIR 0.9  








23.1
2

15049090

1509010.090.15

2

22

I

IIIIW

 

Exercise  

1. (a) Find the current in an 0.8  resistor connected to a battery that has an internal 

resistance of 15.0  if the voltage across the battery (the terminal voltage) is 9.00 V. (b) 

What is the emf of the battery? 

2. A battery with an emf of V0.12  has a terminal voltage e of V5.11  when the current is 3.00 

A. (a) Calculate the battery’s internal resistance r . (b) Find the load resistance R  . 

 

11.5.2 Combinations of Resistor  

11.5.2.1 Combinations of resistors in Series   

When two or more resistors are connected end to end as in Figure 11.24, they are said to be in 
series, and for such connection the current is the same in the two resistors because any charge that 

flow though 1R is the same as the charge flow through 2R .  For series connection the equivalent 

resistance is the sum of the individual resistance.  

21 RRR   

And for N resistors connected in series  

                              
N

i

iRR )16.11(  

 

11.5.2.2 Resistors in Parallel  

Let consider two resistors connected in parallel, as in Figure 11.25. In this case the potential 
differences across the resistors are the same because each is connected directly across the battery 
terminals. 

Fig. 11. 24: Two resistors, 𝑅  and 𝑅 , in the form of incandescent light bulbs, in series with a 
battery. The currents in the resistors are the same, and the equivalent resistance of the 
combination is 𝑅  𝑅  𝑅  
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                                       21 III   

This leads to  

                           
21 /1/1/1 RRReq   

For N resistors connected in parallel  

                             )17.11(
1

/1
1





N

i i

eq
R

R  

 

 

Examples  

1. Three 0.9  resistors are connected in series with a V0.12 battery. Find (a) the equivalent 

resistance of the circuit and (b) the current in each resistor. (c) Repeat for the case in which 
all three resistors are connected in parallel across the battery. 

Solution: 

 27321 RRRR  

The total current in the circuit is the same as the current in each resistor in series 
connection.   

AVRVIIII 44.027/12/321   













33/1
9

1

9

1

9

1
/1/1

3

1

eq

i

ieq RRR  

The potential difference across each resistor is the same as the poetical of the source in this 
case.  But the total current is the sum of the individual current through each resistor. 

AVRVI eq 0.43/12/   

Fig. 11.25 Two resistors, 𝑅  and 𝑅 , in the form of incandescent light bulbs, in parallel with a 
battery. The potential differences across 𝑅  and 𝑅  are the same. Currents in the resistors are 
different, and the equivalent resistance of the combination is given by   𝑅𝑒𝑞    𝑅    𝑅 . 
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Fig. 11.26 

AVRVI

AVRVI

AVRVI

33.19/12/

33.19/12/

33.19/12/

331

22

11







 

 

2. (a) Find the equivalent resistance between points a and b in Figure11.26. (b) Calculate the 
current in each resistor if a potential difference of 34.0 V is applied between points a and b. 

Solution  

First determine the equivalent resistance for 0.7 and 0.10

resistors. 

That is 



 12.4

107

107
10,7R  

Now this is connected in series to the 0.4  and the 0.9  

resistors.  

 12.180.1012.40.4eqR  

3. A car battery with a V0.12 emf and an internal resistance of 04.0  is being charged with a 

current of 50 A. What are (a) the potential difference V across the terminals, (b) the rate 
which energy dissipated inside the battery, and (c) the rate at which energy converted to 
chemical form?  

Solution:  

VAVIrIRV 0.100.5004.00.12    

WAIrPr 10004.0)0.50( 22   

WVAIP 0.6000.120.50    

 

Exercises  

1. A certain battery has a 12.0-V emf and an internal resistance of 0.100 Ω. (a) Calculate its 
terminal voltage when connected to a 10.0-Ω load. (b) What is the terminal voltage when 
connected to a 0.500-Ω load? (c) What power does the 0.500-Ω load dissipate? (d) If the 
internal resistance grows to0.500 Ω, find the current, terminal voltage, and power dissipated 
by a 0.500-Ω load. 

2. A 5.0 A current is set up in a circuit for 6.0 min by a rechargeable battery with a 6.0 V emf. 
By how much is the chemical energy of the battery reduced? 

3. Consider the circuit shown in Figure P11.27. (a) Calculate the equivalent resistance of the
0.10 and 0.5 resistors connected in parallel. (b) Using the result of part (a), calculate the 

combined resistance of the 0.10 , 0.5 , and 0.4 resistors. (c) Calculate the equivalent 

resistance of the combined resistance found in part (b) and the parallel 0.3 resistor. (d) 

Combine the equivalent resistance found in part (c) with the 0.2 resistor. (e) Calculate the 

total current in the circuit. (f) What is the voltage drop across the 0.2 resistor? (g) 
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Subtracting the result of part (f) from the battery voltage, find the voltage across the 0.3

resistor. (h) Calculate the current in the 0.3 resistor. 

 

4. For the circuit shown in Fig. 11.28, how much current flows through the 20 k_ resistor? 
What must its power rating be? 

 

 

11.5.3 Kirchhoff’s Law  

In section 11.52 we discussed simply way of analyzing circuits. The procedure for analyzing more 
complex circuits can be facilitated by the use of two simple rules called  Kirchhoff’s rules: 

1. The sum of the currents entering any junction must equal the sum of the currents leaving 
that junction. (This rule is often referred to as the junction rule or conservation of charge) 

321 III   

 

2. The sum of the potential differences across all the elements around any closed circuit loop 
must be zero. (This rule is usually called the loop or voltage rule.) 

0V   

 

Examples  

1. For the loop shown by Fig. 11.30 determine the values of all currents.  

 

Fig. 11.27 

Fig.11.28 

𝑰𝟏 𝑰𝟐 

𝑰𝟑 

Fig.11.29 
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Fig.11.30 

1 

2 

 

For loop 1: 

              or           

Using the given values 5   9  ⇒    
 

 
   

For loop 2:  

6                
6    4     9   

 

From junction rule:          

6    4        9   4   4
5

9
   5   

   

9
   

 

   
6 × 9

   
    54         

5

9
   

  54 × 5

9
    3             54    3    84  

 

Exercises 

1. For the circuit of Fig. 11.31 calculate (a) the 
current drawn from the source, (b) the 
potential difference across each resistor, (c) 
the current through each resistor, and (d) the 
power dissipated by the 5    resistor.  

2. For the circuit of Fig. 11.32 determine the 
value and direction of the current in each 
branch, and the potential difference across 
the       resistor. 

3. For the bridge network shown in Fig. 11.33 
calculate the current through each resistor, 
and the current drawn from the supply. 

 
Fig. 11.32 Fig.11.33 

 
Fig. 11.31 
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11.6 Magnetic field and Magnetic Flux 

Learning Outcome 

After completing this Chapter, students are expected to: 

 Describe the relationship between electricity and magnetism. 

 Define magnetic field and describe the magnetic field lines of various magnetic fields. 

 Explain the effects of magnetic fields on moving charges and current-carrying conductors. 

 Use the right-hand rule to determine directions of magnetic fields and forces on a moving 
charge. 

 Explain the phenomenon of electromagnetic induction. 

 Solve problems related to magnetic fields and electromagnetic induction. 

Introduction 

Magnets and their properties have been known for thousands of years. It is believed that magnetic 
rocks were first found in a place called Magnesia, now part of western Turkey. Interest to study 
magnetic properties gradually lead to practical applications for magnets such as using them as 
navigational compasses in long-distance sailing. Today magnetism plays many important roles in our 
lives. Mobile phones wouldn’t have been possible without the applications of magnetism and 
electricity on a small scale. Large electromagnets are used to pick up heavy loads, levitate high-
speed trains, generate electric power. Magnets are in audio/video recording devices to store 
computer data. Magnetic fields are used in MRI medical treatments, in particle accelerators to guide 
particles into targets at nearly the speed of light. The use of magnetism to explore brain activity is a 
subject of contemporary research and development. The Earth’s magnetic field protects us by 
trapping charged particles from outer space by trapping them in the Van Allen belts. This chapter 
discusses that all these and other applications of the magnetism are based on a few underlying 
physical principles. 

In this section we discuss we discuss the relation between magnetic fields and moving charges. 
Changing magnetic fluxes can create electric fields. These phenomena signify an underlying unity of 
electricity and magnetism. We will see that the ultimate source of any magnetic field is electric 
current. 

11.6.1 Magnetic Field 

11.6.1.1 Magnets 

Magnets come in various shapes, sizes, and strengths as shown in Figure 11-1 (below). All magnets 

have two inseparable poles called north pole and a south pole. A single isolated pole (a monopole) 

has never been observed so far. The names come from the observation that a freely hanging bar 

magnet aligns itself in the north-south geographic direction; the north pole of the bar magnet is the 

one that points north. Observations also show that like poles repel each other and unlike poles 

attract each other (Figure 11-2, below). 
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Figure 11-1: Magnets with different shapes and sizes 
 

Figure 11-2: interaction between magnets 

11.6.1.2 The Source of All Magnetism – current  

A compass needle deflects when brought close to a current-carrying wire, indicating that electric 

currents produce magnetic effects. This phenomenon, first observed by the Danish scientist Hans 

Christian Oersted (1777–1851), shows the connection between currents and magnets. Electric 

current is used to make magnets called electromagnets. Electromagnets are employed for 

everything from a wrecking yard crane that lifts scrapped cars to controlling the beam of a 90-km-

circumference particle accelerator to the magnets in medical imaging machines. Figure 11-3 (below) 

shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The 

similarity of the patterns indicate that electromagnets have the same basic characteristics as bar 

magnets (ferromagnets)—for example, they have north and south poles that cannot be separated 

and for which like poles repel and unlike poles attract. 

 

Figure 11-3: Iron filings sprayed near (a) a current-carrying coil and (b) a bar 
magnet produce very similar patterns, especially near the ends of the coil 
and the magnet. The current-carrying coil is an electromagnet with north 
and south poles similar to the bar magnet. 

The magnetic properties of bar magnets are also due to current loops at the atomic and subatomic 

levels. These current loops are formed by the motion of charged particles such as electrons and 

protons in the same way as currents are formed in wires by the motion of electrons. Scientific 

observations so far confirm that electric currents (in wires or atoms) are sources of all magnetism.    
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11.6.1.3 Magnetic Fields and Magnetic Field Lines 

It is common experience to observe that magnets interact at a distance, that is, without touching 

each other. In this sense magnetic forces are similar to electric and gravitational forces. We 

therefore define a magnetic field to represent magnetic forces. To help us visualize magnetic fields 

we draw lines around magnets. These lines, called magnetic field lines, represent both the strength 

and direction of the magnetic field. As shown in Figure 11-4 (below), the direction of magnetic field 

lines is defined to be the direction in which the north end of a compass needle points. The magnetic 

field is traditionally called the B-field. 

 

Figure 11-4: (a) Magnetic field lines traced out using a compass needle. (b) Each 
field line forms a continuous closed loop going through the interior of the 
magnet. 

 

The strength of the B-field is proportional to the closeness of the lines. As shown in Figure 11-4 

(above), the lines are very close to each other near the poles indicating that the magnetic field is 

stronger near the poles. 

Similarly, small magnetic compasses can be used to show how the magnetic field appears for a 

current loop and a long straight wire (Figure 11-5, below). A small compass placed in these fields will 

align itself parallel to the field line at its location, with its north pole pointing in the direction of B. 

We use the symbols  and  to indicate fields into and out of the paper, respectively. 

 

Figure 11-5: (a) The magnetic field of a circular current loop (blue) is similar to that of a bar magnet. 
The compass placed within the current loop points up indicating the top of the loop is the north pole 
and the bottom is the south pole. (b) A long and straight wire creates a field with magnetic field lines 
forming circular loops. (c) The right-hand rule is used to determine the direction of the B-field 
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around the wire. The ‘dot’ symbol means the field is pointing out and the ‘cross’ symbol means the 
field is into the page. 

Studies of magnetic fields revealed the following properties: 

1. The direction of the magnetic field is tangent to the field line at any point in space. A small 

compass will point in the direction of the field line. 

2. The strength of the field is proportional to the closeness of the lines. It is exactly 

proportional to the number of lines per unit area perpendicular to the lines. 

3. Magnetic field lines never cross, that is, the field is unique at any point in space. 

4. Magnetic field lines are continuous, forming closed loops without beginning or end.  

The last property is related to the fact that the north and south poles cannot be separated (no 

magnetic monopoles). It is a distinct difference from electric field lines, which begin and end on the 

positive and negative charges which exist separately. 

11.6.1.4 Magnetic Force on a Moving Charge 

Moving charges produce currents, which in turn produce magnetic fields. These magnetic fields of 

moving charges interact with other magnetic fields through which the moving charges pass. 

The magnitude of the magnetic force   on a charge   moving at a speed   in a magnetic field of 

strength   is given by 

                   (11-1) 

where   is the angle between the directions of   and  . This force is often called the Lorentz force. 

The SI unit for magnetic field strength   is called the tesla (T).  

   
  

    ⁄
  

  

   
  

Another unit is the gauss (G) which is defined as          . The strongest permanent magnets 

have fields near 2T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic 

field on its surface is only about  ×      T, or 0.5 G. 

The direction of the magnetic force  ⃗⃗⃗ is perpendicular to the plane formed by  ⃗⃗⃗ and  ⃗⃗⃗, as 

determined by the right-hand rule, which is illustrated in Figure 11-6 (below). To employ right-hand 

rule: 

1. Point the fingers of your right hand in the direction of the velocity vector,  ⃗⃗⃗. 

2. Curl the fingers in the direction of the magnetic field  ⃗⃗⃗, moving through the smallest angle 

(as in Figure 11-6). 

3. Your thumb is now pointing in the direction of the magnetic force  ⃗⃗⃗ exerted on a positive 

charge. 
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Figure 11-6: The right-hand rule for determining the direction of the magnetic 
force on a positive charge moving in a magnetic field. 

The Lorentz force shows that if a charged particle moves in the direction of the magnetic field (θ = 

0), it experiences no magnetic force; if the charged particle moves perpendicular to the magnetic 

field (θ = 90°), the magnetic force acting on it will be maximum.  

 

𝐹     ×      𝐶     𝑚 𝑠  5 ×      𝑇  
𝐹   ×       𝑁 

Examples 

1. In a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it.  Calculate 
the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal 
velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the 
ground. 

 

Solution  

The magnetic force is 𝐹  𝑞𝑣𝐵 s  𝜃  

The angle between 𝒗 and 𝑩 is 90° so sin θ = 1. Substituting given values yields 

 

This force is completely negligible on any macroscopic object, consistent with experience. 
The Earth’s magnetic field, however, does produce very important effects, particularly on 
sub-microscopic particles. 
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Exercise 

1. A charged particle shot perpendicular to a uniform B -field as shown in the figure traces out 

a circular path. Find the radius of the circular path. 

 

 

Suppose, in the last example above, the charged particle has a velocity component parallel to the 

magnetic field. This component is not affected by the magnetic field, so the charged particle keeps 

𝐹  𝑞𝑣𝐵 s  𝜃 

    6 ×       𝐶 (    ×    
𝑚

𝑠
)  55  ×      𝑇 s  9   ° 

 8 8 ×      𝑁 

 

2. A proton moves with a speed of     ×     m/s through Earth’s magnetic field, which 
has a value of 55  ×      T at a particular location. When the proton moves eastward, 
the magnetic force on it is upward, and when it moves northward, no magnetic force acts 
on it. What is the direction of the magnetic field and the strength of the magnetic force 
when the proton moves eastward? 

Solution 

Find the direction of the magnetic field 

No magnetic force acts on the proton when it’s going north because the angle the direction 
of the proton’s velocity the direction of the magnetic field is either 0° or 180°. Therefore, the 
magnetic field B must point either north or south.  

When the particle travels east, the magnetic force is upward. Now employ the right-hand 
rule. Point your thumb in the direction of the force (upward) and your fingers in the 
direction of the velocity eastward. When you curl your fingers, they point north, which must 
therefore be the direction of the magnetic field. 

Find the magnitude of the magnetic force 

Substitute the given values into the Lorentz Equation. From part (a), the angle between the 
velocity 𝒗 of the proton and the magnetic field 𝑩 is 90.0°. 
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moving in the direction of the magnetic field while undergoing circular motion. This produces a spiral 

motion (helix) as shown in the figure below. 

 

Figure 11-7: Spiral (helical) motion of a charged particle 

Exercise 

1. A charged particle enters a uniform magnetic field at a speed of     ×     m/s. It 

subsequently moves in a circular orbit with a radius of 16.0 cm. The uniform magnetic 

field has a magnitude of 0.350 T and is directed perpendicular to the particle’s velocity. 

Find the particle’s mass-to-charge ratio. 

 

11.6.1.5 Magnetic Force on a Current-Carrying Conductor 

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic 

forces on individual charges. 

 

Figure 11-8: A conductor placed in a magnetic field experiences (a) no magnetic force if it carries 
no current (b & c) a magnetic force perpendicular to both the wire and the B-field if it carries a 
current. (d) A section of the wire magnified to show charges moving past a cross-section.  

The force on an individual charge moving at the drift velocity    is given by (1.1): 
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                    (11-2) 

Taking B to be uniform over a length   of the wire and zero elsewhere, the total magnetic force on 

the wire is then  

                     (11-3) 

where   is the number of charge carriers in the section of wire of length   . Now, 

    , where   is the number of charge carriers per unit volume and   is the volume of wire in 

the B-field. Noting that     , where   is the cross-sectional area of the wire, then the force on the 

wire is  

                        (11-4) 

The first parentheses give the current   in the wire (see Current), 

                (11-5) 

Error! Reference source not found.) is the equation for the magnetic force on a length   of wire 

arrying a current   in a uniform magnetic field  , as shown in Figure 11-8 (above). If we divide both 

sides of this expression by   , we find that the magnetic force per unit length of wire in a uniform 

field: 

 

 
              (11-6) 

The direction of this force is given by the right-hand rule – place your fingers in the direction of the 

current, curl them in the direction of the B-field, the thumb then points in the direction of the force, 

see Figure 11-8d, above. 

 

𝐹  𝐼𝑙𝐵 s  𝜃        𝐴     5   𝑚    5  𝑇  s  9 °  
𝐹    5  𝑁 

Examples 

1. Calculate the force on the wire shown in Figure 11-8, given B = 1.50 T, l = 5.00 cm, and I = 
20.0 A. 

Solution  

Entering the given values into  =   𝒔𝒊𝒏𝜽 (11-5)  yields 

2. In a lightning strike, there is a rapid movement of negative charge from a cloud to the 
ground. In what direction is a lightning strike deflected by Earth’s magnetic field? 

Solution 

The downward flow of negative charge in a lightning strike is equivalent to a current 
moving upward. The magnetic field is from south to North. According to right-hand rule, 
the lightning strike would be deflected toward the west. 
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Exercise 

1. A wire carries a current of 22.0 A from west to east. Assume the magnetic field of Earth at this 

location is horizontal and directed from south to north and it has a magnitude of      ×     

T. (a) Find the magnitude and direction of the magnetic force on a 36.0-m length of wire. (b) 

Calculate the gravitational force on the same length of wire if it’s made of copper and has a 

cross-sectional area of     ×        . 

11.6.1.6 Magnetic Torque 

Motors have loops of wire in a magnetic field. When current passes through the loops, the magnetic 

field exerts torque on the loops, which rotates a shaft. In the process, electrical energy is converted 

to mechanical work (Figure 11-9.) 

 

 

Figure 11-9: A current loop of wire attached to a vertical shaft feels a 
magnetic torque that produces a clockwise torque as viewed from above. 

 

The force on each segment of the loop in Figure 11-9 can be determined using  =       (11-5). 

We take the magnetic field to be uniform over the rectangular loop, which has width   and height  . 

The magnetic forces on the top and bottom segments are parallel to the shaft, equal in magnitude 

and opposite in direction, and therefore, produce no torque and no net force on the loop. The 

magnetic forces on the other two parallel sides of the loop (denoted as F) are perpendicular to the 

shaft, and produce a torque that rotates the loop as shown in Figure 11-9. The torque of each force 

is 

   (
 

 
)     ,       (11-7) 

where θ is the angle between   and F. The total torque is      .  

                (11-8) 

As seen in Figure 11-9, the right-hand rule gives the forces on the sides to be equal in magnitude and 

opposite in direction, so that the net force is again zero. The magnitude of the forces can be 

determined by Error! Reference source not found.). Since the sides are perpendicular to the B-field, 

in θ in Error! Reference source not found.) becomes one. Therefore,  
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             (11-9) 

Combining Equations (1.8) and (1.9), one gets 

                   (11-10) 

If we have a multiple loop of   turns, we get   times the torque of one loop. Finally, noting that the 

area of the loop is     , the expression for the torque becomes 

                  (11-11) 

The quantity     is defined as the magnitude of a vector   called the magnetic moment of the coil. 

The magnetic moment   always points perpendicular to the plane of the loop(s). Its direction is 

given by the right-hand rule as shown in Figure 11-10: if the fingers of the right hand point in the 

direction of the current, the thumb points in the direction of  . The magnetic torque can now ne 

written in terms of the magnetic moment as 

                (11-12) 

Clearly, the angle θ lies between the directions of the magnetic moment   and the magnetic field B. 

This equation is valid for a loop of any shape. 

 

 

Figure 11-10: Employing the right-hand rule to determine 
the direction of the magnetic dipole moment of a current 
loop. 
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Examples 

1. Find the maximum torque on a 100-turn square loop of a wire of 10.0 cm on a side that 
carries 15.0 A of current in a 2.00-T field. 

Solution  

The maximum torque corresponds to sin θ = 1, so 𝜏𝑚𝑎𝑥  𝑁𝐼𝐴𝐵. Substituting given values 
yields:  

𝜏𝑚𝑎𝑥         5   𝐴        𝑚        𝑇  3    𝑁𝑚. 

 

 

2. A circular wire loop of radius 1.00 m is placed in a magnetic field of magnitude 0.500 T. 
The normal to the plane of the loop makes an angle of 30.0° with the magnetic field 
(Figure 11-11(a)). The current in the loop is 2.00 A in the direction shown. (a) Find the 
magnetic moment of the loop and the magnitude of the torque at this instant. (b) The 
same current is carried by the rectangular 2.00-m by 3.00-m coil with three loops shown 
in Figure 11-11(b). Find the magnetic moment of the coil and the magnitude of the 
torque acting on the coil at that instant. 

 

Figure 11-11: (a) A circular current loop lying in the 𝑥𝑦-plane in an 
external magnetic field B. (b) A rectangular coil lying in the 𝑥𝑦-plane in the 
same B-field. 

Solution 

(a) 𝜇  𝑁𝐼𝐴          𝐴  𝜋        6  8 𝐴 𝑚  

𝜏  𝜇𝐵 s  𝜃   6  8 𝐴 𝑚     5   𝑇 s  3 °    57 𝑁 𝑚  

 

(b) 𝜇  𝑁𝐼𝐴   3      𝐴      𝑚 × 3   𝑚  36   𝐴 𝑚  

𝜏  𝜇𝐵 s  𝜃   36   𝐴 𝑚     5   𝑇 s  3 °  9    𝑁 𝑚  
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Exercise 

1. Suppose a right triangular coil with base of 2.00 m 

and height 3.00 m having two loops carries a current 

of 2.00 A as shown in the figure. Find the magnetic 

moment and the torque on the coil. The magnetic 

field is again 0.500 T and makes an angle of 30.0° 

with respect to the normal direction. 

 

 

11.6.1.7 Magnetic Fields Produced by Currents 

We have seen Section 1.1.1.2 that a current loop created a magnetic field similar to that of a bar 

magnet, but what about a straight wire or a toroid (doughnut)? How is the direction of a current-

created field related to the direction of the current? Answers to these questions are explored in this 

section, together with a brief discussion of the law governing the fields created by currents. 

11.6.1.7.1 Magnetic Field Created by a Long Straight Current-Carrying Wire 

The magnetic field strength produced by a long straight current-carrying wire is found to be 

  
   

   
        (11-13) 

where   is the current,   is the shortest distance to the wire, and the constant      ×

          is the permeability of free space. Since the wire is very long, the magnitude of the field 

depends only on distance from the wire  , not on position along the wire. 

 

Figure 11-12: (a), (b) Compasses show the effects of the current in a wire. (c) the gap between the 
circles shows the variation of the field with distance from the wire. (d) the right-hand rule shows the 
direction of the field.  

To determine the direction of the magnetic field around the straight wire, point the thumb of your 

right hand along the wire in the direction of positive current, as in Figure 11-12(d). Your fingers then 

naturally curl in the direction of the magnetic field B. 



General Physics Module Phys 1011 AAU 

  

Electromagnetism and Electronics  302 

 

 

Exercise 

1. Two straight long parallel wires, separated by a distance of 1.0 m, carry a current of 4.00 

A each. A third wire is arranged perpendicular to the two parallel wires. If the magnetic field 

at a point equidistant from all the wires is zero, find the current in the third wire. 

 

11.6.1.7.2 Magnetic Field at the center of a Current-Carrying Circular Loop 

The magnetic field near a current-carrying loop of wire is shown in Figure 11-13. Both the direction 

and the magnitude of the magnetic field produced by a current-carrying loop are complex.  There is, 

however, a simple formula for the magnetic field strength at the center of a circular loop. It is 

  
   

  
                          (11-14) 

where   is the radius of the loop. This equation is very similar to that for a straight wire, but it is 

valid only at the center of a circular loop of wire. One way to get a stronger field is to have N loops; 

then, the field is            . Note that the larger the diameter of the loop, the smaller the 

field at its center, because the current is farther away. 

 

Figure 11-13: The magnetic field of a current loop 

 

𝐼  
 𝜋𝑟𝐵

𝜇 

 
 𝜋𝑟

𝜇 

  𝐵𝐸  

Example 

1. Find the current in a long straight wire that would produce a magnetic field twice the 

strength of the Earth’s field at a distance of 5.0 cm from the wire. 𝐵𝐸   5  ×      T. 

Solution  

Solving  = 𝝁𝟎            (11-13) 
for the current 𝐼, we get 

Substituting numerical values:     𝐼  
 𝜋(   ×   2𝑚)

 𝜋×   7𝑇𝑚 𝐴⁄
  × 5  ×     𝑇   5 𝐴 
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11.6.1.7.3 Magnetic Field of a Current-Carrying Solenoid 

A solenoid is a long coil of wire with many turns or loops. Because of its shape, the field inside a 

solenoid can be very uniform, and also very strong. The field just outside the coil is nearly zero. 

Figure 11-14 shows how the field looks and how its direction is given by the right-hand rule.  

The interior magnetic field a solenoid with closely spaced turns is very uniform in direction and 

magnitude and strong. Near the ends it begins to weaken and change direction. The field outside has 

similar complexities to single loops and bar magnets. The magnetic field strength inside a long and 

tightly wound solenoid is simply 

    (
 

 
)               (11-15) 

where   is the number of loops and  , the length of the solenoid and        is the number of 

turns per unit length of the solenoid. Fields spread over a large volume are possible with solenoids, 

as the Example below implies. 

 

 

Figure 11-14: The solenoid. (a) The interior magnetic field is stronger and the exterior field is much 
weaker. (b) The direction of the magnetic field is determined by the right-hand rule. 

 

 

𝑩  𝝁𝟎  
𝑵

𝒍
 𝑰  𝟒𝝅 × 𝟏𝟎 𝟕 𝑻  

𝟐𝟎𝟎𝟎 𝒕𝒖𝒓𝒏𝒔

𝟐 𝟎𝟎 𝒎
  𝟏𝟔𝟎𝟎 𝑨  𝟐 𝟎𝟏 𝑻  

Example 

3. What is the field inside a 2.00-m-long solenoid that has 2000 turns and carries a 1600-A 
current? 

Solution  

Substituting known values into Equation 1.15, we get 
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Exercises 

1. Suppose you have a 32.0 - m length of copper wire. If the wire is wrapped into a 

solenoid 0.240 m long and having a radius of 0.040 0 m, how strong is the resulting 

magnetic field in its center when the current is 12.0 A? 

2. A certain solenoid consists of 100 turns of wire and has a length of 10.0 cm. (a) Find 

the magnitude of the magnetic field inside the solenoid when it carries a current of 

0.500 A. (b) What is the momentum of a proton orbiting inside the solenoid in a circle 

with a radius of 0.020 m? The axis of the solenoid is perpendicular to the plane of the 

orbit. (c) Approximately how much wire would be needed to build this solenoid? 

Assume the solenoid’s radius is 5.00 cm. 

11.6.1.8 Magnetic Force between Two Parallel Conductors 

The force between two long straight and parallel conductors separated by a distance   can be found 

by applying what we have developed in preceding sections. Figure 11-15 shows the wires, their 

currents, the fields they create, and the subsequent forces they exert on one another. Let us 

consider the field produced by wire 1 and the force it exerts on wire 2 (  ). by Equation 1.13, the 

field due to    at a distance   is  

   
    

   
        (11-16) 

 

Figure 11-15: (a) Current    produces a magnetic field    at the position of 
current   , which experiences a magnetic force   . (b) The same currents as 
seen from the top.  

 

This field is uniform along wire 2 and perpendicular to it, and so the force    it exerts on wire 2 is 

given by              with sin θ = 1: 

                (11-17) 

By Newton’s third law, the forces on the wires are equal in magnitude, and so we just write   for the 

magnitude of    . (Note that       .) Since the wires are very long, it is convenient to think in 
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terms of    , the force per unit length. Substituting the expression for    into the last equation and 

rearranging terms gives 

 

 
   

    

   
        (11-18) 

The force is attractive if the currents are in the same direction and repulsive if they are in opposite 

directions. 

 

Exercise 

1. In the example above, if the current in each wire is doubled, how far apart should the 

wires be placed if the magnitudes of the gravitational and magnetic forces on the upper 

wire are to be equal? 

 

Definition of the ampere 

The operational definition of the ampere is based on the force between current-carrying wires. 

Consider two parallel wires separated by 1 meter and each carrying current  . Suppose the force per 

meter on each wire due to their magnetic interaction is measured to be  ×        . Now we can 

determine the current I in each wire using Equation (1.18): 

 𝑚𝑔  
𝜇 𝐼 𝐼 
 𝜋𝑟

𝑙    

𝐼   
 𝜋𝑟

𝜇 
(
𝑚𝑔

𝑙
) 

𝐼   
 𝜋 ×     𝑚

4𝜋 ×    7 𝑇𝑚
×      ×      𝑁 𝑚  7  7   

Examples 

1. Two wires, each having a weight per unit length of     ×      N/m, are parallel with 
one directly above the other. Assume the wires carry currents that are equal in 
magnitude and opposite in direction. The wires are 0.10 m apart, and the sum of the 
magnetic force and gravitational force on the upper wire is zero. Find the current in the 
wires. (Neglect Earth’s magnetic field.) 

Solution  

The net force on the upper wire is 𝑭𝑔  𝑭𝑚    

It is given that  𝐼  𝐼  𝐼. Then 

Substituting numerical values: 
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 ×           ×         ×
  

  ×    
 

Solving for I we get exactly 1 ampere. This is the basis of the operational definition of the ampere: 

One ampere of current through each of two parallel conductors of infinite length, 

separated by one meter in empty space free of other magnetic fields, is the amount of 

current that causes a force of exactly  ×      N/m on each conductor. 

 

11.6.2 Magnetic Flux 

Magnetic flux is an important concept in the study of electromagnetism. To get some insight into the 
concept of magnetic flux consider Figure 11-16, below. 

 

 

Figure 11-16: (a) A uniform magnetic field B crosses a rectangular wire loop of 
area A making an angle θ with the direction normal to the plane of the loop. (b) 
A side view clearly showing how the field passes through the loop. 

 

 

Since the magnetic field lines pass through the loop, we say there is a magnetic flux through the 
loop. The magnetic field has components perpendicular and parallel to the plane of the loop. The 
parallel components do not contribute to the magnetic flux because they go parallel to the plane of 
the loop NOT through it. The perpendicular components constitute the flux as they penetrate 
through the plane of the loop. From Figure 11-16, above, the perpendicular component is given by 

 

                (11-19) 

The magnetic flux (  ) through the loop is now defined as the product of    and the area A of the 
loop, that is, 

 

                    (11-20) 
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Using this definition and Figure 11-16(b), we see that when the magnetic field is totally 
perpendicular to the plane of the loop, θ = 0° and  the magnetic flux becomes maximum (see also 
Figure 11-17, below). When the magnetic field is totally parallel to the plane of the loop, θ = 90° and 
the flux is zero. The flux can also be negative. For example, when θ = 180°, the flux is equal to    . 
The SI unit of flux is    , or weber (Wb).  

 

 

Figure 11-17: When the field lines are perpendicular to the plane of the 
loop, the magnetic flux through the loop is maximum; When the field lines 
are parallel to the plane of the loop, the magnetic flux through the loop is 
zero. 

 

Exercises 

1. The loop in the example above, having rotated by 45°, rotates clockwise another 30°, so the 

normal to the plane points at an angle of 75° with respect to the direction of the magnetic 

field. Find (a) the magnetic flux through the loop when θ = 75° and (b) the change in 

magnetic flux during the rotation from 45° to 75°. 

 

Example 

1. A conducting circular loop of radius 0.250 m is placed in the xy-plane in a uniform 
magnetic field of 0.360 T that points in the positive z-direction, the same direction as the 
normal to the plane. (a) Calculate the magnetic flux through the loop. (b) Suppose the 
loop is rotated clockwise around the x-axis, so the normal direction now points at a 45.0° 
angle with respect to the z-axis. Recalculate the magnetic flux through the loop. (c) What 
is the change in flux due to the rotation of the loop? 

Solution  

(a)  Φ𝐵  𝐵𝐴   s𝜃  𝐵  𝜋𝑟    s  ° 

 Φ𝐵     36  𝑇  𝜋 ×    5   𝑚      7 6 Wb 

 

(b) Φ′𝐵  𝐵𝐴   s 𝜃  𝐵  𝜋𝑟    s45° 

 Φ′𝐵     36  𝑇  𝜋 ×    5   𝑚   √        499 Wb 

 

(c) ΔΦ𝐵  Φ′𝐵  Φ𝐵     7 6 Wb     499Wb        7 Wb 
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2. Find the flux of Earth’s magnetic field of magnitude     ×     T through a square loop of 

area 20.0     (a) when the field is perpendicular to the plane of the loop, (b) when the field 

makes a 30.0° angle with the normal to the plane of the loop, and (c) when the field makes a 

90.0° angle with the normal to the plane. 

 

11.7 Electromagnetic Induction 

The concept of magnetic flux is useful to understand the basic idea of electromagnetic induction. 

Consider a wire loop connected to an ammeter as in Figure 11-18. When a bar magnet is moved 

toward the loop, the ammeter reads a current in one direction, as in  Figure 11-18(a). When the bar 

magnet is held stationary [Figure 11-18(b)], the ammeter reads zero current. When the bar magnet 

is moved away from the loop, the ammeter reads a current in the opposite direction [Figure 

11-18(c)]. If the magnet is held stationary and the loop is moved either toward or away from the 

magnet, the ammeter also reads a current.  

From these observations, it can be concluded that a current is established in the circuit as long as the 

magnetic flux through the loop changes irrespective of the relative motion between the magnet and 

the loop. We call such a current induced current and the potential difference producing it, induced 

emf.  

The magnitude of the induced emf and its direction are determined, respectively, by Faraday’s law 
and Lenz’s law which are discussed below.   

 

Figure 11-18: A change in the magnetic flux through the loop is produced by moving the bar magnet 
which, in turn, induces a current in the loop as indicated by the ammeter. 
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11.7.1.1 Faraday’s Law of Induction: Lenz’s Law 

Faraday’s law of magnetic induction states that: 

If a circuit contains N tightly wound loops and the magnetic flux through each loop changes by the 

amount     during the time interval   , the average emf induced in the circuit is 

    
   

  
          s          (11-21) 

The minus sign in Equation (1-21) is included to indicate the polarity of the induced emf. This polarity 

determines the direction of the current in the loop and is given by Lenz’s law: 

The current caused by the induced emf is in a direction that creates a magnetic field with 

flux opposing the change in the original flux through the circuit. 
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Exercise 

1. In the example above, suppose the magnetic field changes uniformly from 0.500 T to 0.200 T 

in the next 0.600 s. Compute (a) the induced emf in the coil and (b) the magnitude and 

direction of the induced current. 

 

Example 

1. A coil with 25 turns of wire is wrapped on a frame with a square cross section 1.80 cm on 
a side. Each turn has the same area, equal to that of the frame, and the total resistance 
of the coil is 0.350 V. An applied uniform magnetic field is perpendicular to the plane of 
the coil, as in the figure below. (a) If the field changes uniformly from 0.00 T to 0.500 T in 
0.800 s, what is the induced emf in the coil while the field is changing? Find (b) the 
magnitude and (c) the direction of the induced current in the coil while the field is 
changing. 

Solution  

Φ𝐵 𝑓  𝐵𝑓𝐴    5    × 3  4 ×         

Φ𝐵 𝑓    6 ×      Wb  

ℰ   𝑁
ΔΦ𝐵

Δ𝑡
   5 𝑡𝑢𝑟𝑛𝑠 

  6 ×      𝑊𝑏

  8   𝑠
 

ℰ   5  6 ×      𝑉 

(a) Area of loop: 𝐴     8 ×           

   𝐴  3  4 ×         

Flux at 𝑡   :    Φ𝐵 𝑖  𝐵𝑖𝐴       𝑊𝑏 

Flux at t=0.800s:  

Change in flux: ΔΦ𝐵    6 ×      Wb 

Induced emf:  

 

𝐼  
ℰ

𝑅
 

5  6 ×      𝑉

  35  Ω 
   45 ×        

(b) Induced current: 

(c) The current must be in a clockwise direction as viewed 
from above the coil. This is because, by Lenz’s law, the 
flux is positive and increasing. This is opposed by a 
negative flux from a downward magnetic field that 
could exist only if the induced current is clockwise as 
seen from above. 
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11.7.1.2 Motional emf 

A straight conductor of length  , is moving with constant velocity   along two conducting rails and 

perpendicular to a uniform magnetic field directed into the paper, as in Figure 11-19.  

 

Figure 11-19: (a) An emf is induced when a straight conductor slides with velocity   
along two conducting rails under the action of an applied force     . (b) The equivalent 

circuit shows a battery to represent motional emf in (a). 

 

A magnetic force of magnitude       , directed downward, acts on the electrons in the 

conductor. Because of this magnetic force, the free electrons move to the lower end of the 

conductor resulting in a separation of charges that makes the upper end more positive than lower 

end of the conductor. The charge separation produces an electric field which exerts an upward force 

   on the electrons. Eventually, the downward magnetic force is balanced by the upward electric 

force,        or     . 

            (11-22) 

The uniform electric field produced in the conductor is related to the potential difference across the 

ends created by the charge separation by the formula: 

            (11-23) 

Combining Equations (1-22) and (1-23) yields 

              (11-24) 

This potential difference is due to the motion of the conductor in a magnetic field and hence the 

name motional emf. The direction of the motional emf in Figure 11-19 can be determined by Lenz’s 

law or the right-hand rule: 
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Using Lenz’s law: The magnetic flux increases into the page. To oppose this change, a magnetic field 

is induced out of the page which corresponds to an induced current counterclockwise. The 

motional emf is then from the lower to the upper end of the conductor. 

Using the right-hand rule: Stretch your right-hand fingers in the direction of the velocity and curl your 

fingers in the direction of the magnetic field, the thumb will point in the direction of the 

motional emf.  

The motional emf can be derived using Faraday’s law as follows: In Figure 11-19, the area of the 
loop,     , increases as the conductor moves away from the resister. The magnetic flux through 
the loop, therefore, changes as 

 

             

 

The magnitude of the motional emf is then 

 

  
   

  
   

  

  
           (11-25) 

If the resistance of the circuit is R, the magnitude of the induced current in the circuit is 

 

  
ℰ

 
 

   

 
 

 

 

 

Exercise 

ℰ  𝐵𝑙𝑣     6  ×        3         5 ×       s    45  𝑉 

Example 

3. An airplane with a wingspan of 30.0 m flies due north at a location where the downward 
component of Earth’s magnetic field is   6  ×     T. There is also a component 
pointing due north that has a magnitude of   47 ×     T. (a) Find the difference in 
potential between the wingtips when the speed of the plane is   5 ×     m/s. (b) 
Which wingtip is positive? 

Solution  

(a) The potential difference across the wingtips 

(b) identify the positive wingtip 

Apply the right-hand rule: Point the fingers of your right hand north, in the direction of 
the velocity, and curl them down, in the direction of the magnetic field. Your thumb 
points west. Therefore, the west wingtip is positive. 
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1. Suppose a space station is in orbit where the magnetic field is parallel to Earth’s 

surface, points north, and has magnitude     ×      T. A metal cable attached to 

the space station stretches radially outwards 2.50 km. (a) Estimate the potential 

difference that develops between the ends of the cable if it’s traveling eastward 

around Earth at a speed of     ×     m/s. (b) Which end of the cable is positive, 

the lower end or the upper end? 
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11.8 Semiconductors and Diodes  

Learning outcomes 

After completing this section, students are expected to: 

 Recognize the basic structure of semiconductors and how they conduct current 

 Distinguish between conductors, semiconductors, and insulators 

 Describe the structure of a silicon crystal. 

 List the two types of carriers and name the type of impurity that causes each to be a 
majority carrier. 

 Explain the conditions that exist at the pn junction of an unbiased diode, a forward-biased 
diode, and a reverse-biased diode. 

 Describe the characteristics and biasing of a diode 

 Analyze the operation of a half-wave rectifier and a full-wave rectifier 

 

Solids can be divided into three groups based on their ability to conduct electricity. These groups are 

1. Conductors: These are solid materials with high electrical conductivity (with 10-2 .m). 
Example: metals. 

2. Insulators: These are solids having very low conductivity ((with 10-11 .m). Examples: 
plastics and wood. 

3. Semiconductors: These are solids with conductivity intermediate to metals and insulators 

(with 10-5 .m). Examples: Silicon (Si) and Germanium (Ge) 

Metals conduct very well and semiconductors don’t. One very interesting difference is that metals 
conduct less as they become hotter but semiconductors conduct more. 

A semiconductor is a solid, crystalline substance that conducts electric current better than an 
insulator but not as well as a conductor. For example, semiconductors conduct electric current 
better than paper, wood, and air but not as well as copper wire. 

The most widely used semiconductors in electronics are the elemental semiconductors silicon (Si) 
and germanium (Ge). There are also compound semiconductors formed from (a) the III-V from the 
periodic table such as CdS, GaAs, CdSe, and InP; and (b) the II-VI such as. ZnS, and HgS. 

Further, semiconductors may be classified into two groups: intrinsic and extrinsic semiconductors. 

11.8.1 Intrinsic Semiconductors: 

Intrinsic semiconductors are one that has no impurities. They are those semiconductors that have 
been carefully refined to reduce the impurities to a very low level-essentially as pure as can be made 
available.  

In intrinsic semiconductors, the number of free electrons,    is equal to the number of holes,   . 

Semiconductors possess the unique property in which, apart from electrons, the holes also move. 

 

Remark:  

Intrinsic (pure) semiconductors are neither good conductors nor good insulators. However, their 
conductivity can be increased by a process known as doping. 
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11.8.2 Extrinsic Semiconductors 

A semiconductor is a solid whose electrical properties can be modified by a process known as 
doping. Doped semiconductors are known as extrinsic semiconductors. Extrinsic semiconductors are 
classified into two main categories: n-type and p-type.  

Definition: Doping 

Doping is the deliberate addition of impurities to a pure semiconductor material to change its 
electrical properties. 

Semiconductors are often the Group IV elements in the periodic table. The most common 
semiconductor elements are silicon (Si) and germanium (Ge). The most important property of Group 
IV elements is that they 4 valence electrons. So, if we look at the arrangement of for example Si 
atoms in a crystal, they would look like that shown in Figure 11.8.1. 

I) N-type Semiconductor 

A surplus of electrons is created by adding an element that has more valence electrons than Si to the 
Si crystal. This is known as n-type doping and elements used for n-type doping usually come from 
Group V in the periodic table. Elements from Group V have 5 valence electrons, one more than the 
Group IV elements. 

A common n-type dopant (substance used for doping) is arsenic (As). The combination of a 
semiconductor and an n-type dopant is known as an n-type semiconductor. A Si crystal doped with 
Sb is shown in Figure (a). When Sb is added to a Si crystal, the 4 of the 5 valence electrons in Sb bond 
with the 4 Si valence electrons. The fifth Sb valence electron is free to move around. 

It takes only a few Sb atoms to create enough free electrons to allow an electric current to flow 
through the silicon. Since n-type dopants ‘donate’ their free atoms to the semiconductor, they are 
known as donor atoms. 

 

Fig. 11.8.1 Si crystal doped with (a) Antimony (Sb) and (b) Boron (B). 

II) P-type Semiconductor 

A deficiency of electrons is created by adding an element that has less valence electrons than Si to 
the Si crystal. This is known as p-type doping and elements used for p-type doping usually come 
from Group III in the periodic table. Elements from Group III have 3 valence electrons, one less than 
the semiconductor elements that come from Group IV. A common p-type dopant is boron (B). The 
combination of a semiconductor and a p-type dopant is known as an p-type semiconductor. A Si 
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crystal doped with B is shown in Figure 11.8.1. When B is mixed into the silicon crystal, there is a Si 
valence electron that is left unbonded. 

The lack of an electron is known as a hole and has the effect of a positive charge. Holes can conduct 
current. A hole happily accepts an electron from a neighbour, moving the hole over a space. Since p-
type dopants ‘accept’ electrons, they are known as acceptor atoms. 

 

Questions: 

1. What is meant by the term intrinsic? 

2. How are holes created in an intrinsic semiconductor? 

3. How is an n-type semiconductor formed? 

4. How is a p-type semiconductor formed? 

5. What are majority carriers? 

6. Explain the process of doping using detailed diagrams for p-type and n-type semiconductors. 

7. Draw a diagram showing a Ge crystal doped with As. What type of semiconductor is this? 

8. Draw a diagram showing a Ge crystal doped with B. What type of semiconductor is this? 

9. Explain how doping improves the conductivity of semiconductors. 

10. Would the following elements make good p-type dopants or good n-type dopants? B, P, Ga, 
As, In, and Bi. 

 

11.8.3 The pn-junction 

When p-type and n-type semiconductors are placed in contact with each other, a p-n junction is 
formed. Near the junction, electrons and holes combine to create a depletion region. 

 

Fig. 11.8.2: The p-n junction forms between p- and n-type semiconductors. 

 

The free electrons from the n-type material combine with the holes in the p-type material near the 
junction. There is a small potential difference across the junction. The area near the junction is called 
the depletion region because there are few holes and few free electrons in this region. 

11.8.3.1 pn-junction with no bias 

In a pn-junction, without an external applied voltage (no bias), an equilibrium condition is reached in 
which a potential difference is formed across the junction.  

 

Depletion region 
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Fig.11.8.3 pn-junction with no bias 

 

Initially, when you put the n-type and p-type semiconductors together to form a junction, holes near 
the junction tends to 'move' across to the n-region, while the electrons in the n-region drift across to 
the p-region to 'fill' some holes. This current will quickly stop as the potential barrier is built up by 
the migrated charges. So in steady state no current flows. 

11.8.3.2 Forward biased pn-junction 

Forward-bias occurs when the p-type semiconductor material is connected to the positive terminal 
of a battery and the n-type semiconductor material is connected to the negative terminal. The 
electric field from the external potential different can easily overcome the small internal field 
created by the initial drifting of charges. The external field then attracts more electrons to flow from 
n-region to p-region and more holes from p-region to n-region and you have a forward biased 
situation. As a result a large current flows across the pn-junction. 

 

Fig. 11.8.4: Forward biased pn-junction (narrow depletion region). 

11.8.3.3 Reverse biased pn-junction 

Reverse bias occurs when the p-type semiconductor material is connected to the negative terminal 
of a battery and the n-type semiconductor material is connected to the positive terminal. In this case 
the external field pushes electrons back to the n-region while more holes into the p-region. 
Therefore, you get no current flow. Only the small number of thermally released minority carriers 
(holes in the n-type region and electrons in the p-type region) will be able to cross the junction and 
form a very small current.  
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Fig. 11.8.5: Reverse pn-junction (broad depletion region). 

 

Exercise: 

1. Compare p- and n-type semiconductors. 

2. Explain how a pn-junction works using a diagram. 

 

11.8.4 Active Circuit Elements 

Electric circuits that consists of only resistors, capacitors or/and inductors are called passive 
components. They do not change their behaviour in response to changes in voltage or current. 
Active components are quite different. Their response to changes in input allows them to make 
amplifiers, calculators and computers. 

11.8.4.1 The Diode 

A diode is an electronic device that allows current to flow in one direction only. A diode consists of 
two doped semi-conductors joined together so that the resistance is low when connected one way 
and very high the other way. 

The diode consists of two semiconductor blocks attached together. Neither block is made of pure 
silicon - they are both doped. In short, p-type semiconductor has fewer free electrons than normal 
semiconductor. ‘p’ stands for ‘positive’, meaning a lack of electrons, although the material is actually 
neutral. The locations where electrons are missing are called holes.  

 
Fig. 11.8.6: (a) Semiconductor diode, (b) Symbol for pn-junction diode. 

 
In n-type semiconductor, the situation is reversed. The material has more free electrons than normal 
semiconductor. ‘n’ stands for ‘negative’, meaning an excess of electrons, although the material is 
actually neutral. 
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When a p-type semiconductor is attached to an n-type semiconductor, some of the free electrons in 
the n-type move across to the p-type semiconductor. They fill the available holes near the junction. 
This means that the region of the n-type semiconductor nearest the junction has no free electrons 
(they’ve moved across to fill the holes). This makes this n-type semiconductor positively charged. It 
used to be electrically neutral, but has since lost electrons. 

If the diode is reverse-biased, the + terminal of the battery is connected to the n-type 
semiconductor. This makes it even more negatively charged. It also removes even more of the free 
electrons near the depletion band. At the same time, the − terminal of the battery is connected to 
the p-type silicon. This will supply free electrons and fill in more of the holes next to the depletion 
band. Both processes cause the depletion band to get wider. The resistance of the diode (which was 
already high) increases. This is why a reverse-biased diode does not conduct. 

The reverse current is dependent primarily on the junction temperature and not on the amount of 
reverse-biased voltage. A temperature increase causes an increase in reverse current. If the external 
reverse-bias voltage is increased to a large enough value, reverse breakdown occurs. 

Most diodes normally are not operated in reverse breakdown and can be damaged if they are. 
However, a particular type of diode known as a zener diode is specially designed for reverse-
breakdown operation. 

On the other hand, if the diode is forward biased, the depletion region is made narrower. The 
negative charge on the p-type silicon is cancelled out by the battery. The greater the voltage used, 
the narrower the depletion region becomes. Eventually, when the voltage is about 0.6 V (for silicon) 
the depletion region disappears. Once this has occurred, the diode conducts very well. 

The existence of the positive and negative ions on opposite sides of the pn junction creates a barrier 
potential across the depletion region, as indicated in Figure 11.8.7. The barrier potential, VB, is the 
amount of voltage required to move electrons through the depletion region. At 250C, it is 
approximately 0.7 V for silicon and 0.3 V for germanium. As the junction temperature increases, the 
barrier potential decreases, and vice versa.  

 

Fig. 11.8. 7: For every electron that diffuses across the junction and combines with a hole, a positive 
charge is left in the n region and a negative charge is created in the p region, forming a barrier 
potential. This action continues until the voltage of the barrier repels further diffusion. 
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The effect of the barrier potential in the depletion region is to oppose forward bias. This is because 
the negative ions near the junction in the p region tend to prevent electrons from moving through 
the junction into the p region. 

Exercise 

1. What is a diode?  

2. What is a diode made of? 

3. What is the term which means that a diode is connected the 'wrong way' and little current is 
flowing? 

4. Why is a diode able to conduct electricity in one direction much more easily than the other? 

5. When p and n regions are joined, a depletion region forms. Describe the characteristics of 
the depletion region. 

 

11.8.4.2 Diode Characteristic Curve 

Now that we have seen how a junction diode operates, it is time to examine some of its electrical 
characteristics. This takes into account such things as voltage, current, and temperature. Since these 
characteristics vary a great deal in an operating circuit, it is best to look at them graphically. 

A graph of diode voltage versus current, known as a V-I characteristic curve, is shown in Fig. 11.8.8. 
The upper right quadrant of the graph represents the forward-biased condition. As you can see, 
there is very little forward current (IF) for forward voltages (VF) below the barrier potential. As the 
forward voltage approaches the value of the barrier potential, the current begins to increase. Once 
the forward voltage reaches the barrier potential, the current increases drastically and must be 
limited by a series resistor. The voltage across the forward-biased diode remains approximately 
equal to the barrier potential.  

 

Fig. 11.8.8: General diode V-I characteristic curve 



General Physics Module Phys 1011 AAU 

  

Electromagnetism and Electronics  321 

 

The lower left quadrant of the graph represents the reverse-biased condition. As the reverse voltage 
(VR ) increases to the left, the current remains near zero until the breakdown voltage (VBR) is 
reached. When breakdown occurs, there is a large reverse current (IR ) which, if not limited, can 
destroy the diode. Typically, the breakdown voltage is greater than 50 V for most rectifier diodes. 
Remember that most diodes should not be operated in reverse breakdown. 

 

11.8.4.3 Diode Rectifiers 

Because of their ability to conduct current in one direction and block current in the other direction, 
p-n diodes can be used in rectifier circuits to convert AC to DC, as required in many electronic 
circuits.  The conversion of AC voltage to DC is called rectification and there are two types of 
rectifications. 

 

(i) The Half-Wave Rectifier 

Figure 11.8.9 illustrates the process called half-wave rectification. In part (a), a diode is connected to 
an ac source that provides the input voltage Vin, and to a load resistor RL, forming a half-wave 
rectifier. Keep in mind that all ground symbols represent the same point electrically. Let’s examine 
what happens during one cycle of the input voltage using the ideal model for the diode. When the 
sinusoidal input voltage goes positive, the diode is forward-biased and conducts current through the 
load resistor, as shown in part (b). The current produces an output voltage across the load, which 
has the same shape as the positive half-cycle of the input voltage. 

When the input voltage goes negative during the second half of its cycle, the diode is reverse-biased. 
There is no current, so the voltage across the load resistor is zero, as shown 

in Fig. 11.8.9(c). The net result is that only the positive half-cycles of the ac input voltage appear 
across the load. Since the output does not change polarity, it is a pulsating dc voltage, as shown in 
part (d). 

 
 

Fig. 11.8.9: Operation of half-wave rectifier 
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(ii) Full-wave rectifier 

The difference between full-wave and half-wave rectification is that a full-wave rectifier allows 
unidirectional current to the load during the entire input cycle and the half-wave rectifier allows this 
only during one-half of the cycle.  

By arranging two diodes, as shown in Fig.11.8.10(a), so that each diode conducts in an 
alternate half-cycles, full-wave rectification results. The center-tapped transformer in the 
full-wave rectifier circuit supplies current to both half-cycles of the input voltage. Each diode 
in the full-wave rectifier must withstand the full end-to-end voltage of the transformer 
windings. The output voltage is only one-half (minus the voltage drop across the diodes) the 
total voltage of the transformer secondary. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.8. 10: Full wave rectification 

 

Rectifier circuits are used when the incoming electrical energy, for example, from a wall outlet, is AC 
but needs to be changed into DC. Recall that our audio systems (CD players, FM radio tuners, etc.), 
TVs, microwave ovens, computers, and other electronic appliances use DC. 

Rectifier circuits are also important in the type of fuel cell technology in which AC must be changed 
to DC to separate hydrogen from oxygen in water. To separate the hydrogen and oxygen molecules 
in water, DC is applied to chemical cells in a process called electrolysis. In these cells, the hydrogen 
molecules collect at the negative terminals, and the oxygen molecules collect at the positive 
terminals. The oxygen gas is vented to the atmosphere, but the hydrogen gas is compressed and 
stored in tanks to be used in cars, buses, electrical appliances, and so on. This process allows 
electrical energy from the AC grid to be used at off-peak hours to produce clean-burning hydrogen 
for many uses. 

 

(b): Input voltage. 
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11.8.4.4 Transistors 

Like diodes, transistors are made of semiconductors and are found in almost all electronic devices.  A 
transistor is a control device that amplifies a small input signal into a larger output signal. It consists 
of one type of semiconductor sandwiched between two regions of the opposite type of 
semiconductor. Such types of transistors are also called bipolar junction transistors (BJT). As shown 
in Figure 11.8.11, there are two choices for this type of transistor: p-n-p and n-p-n transistors. 

 

 

Fig. 11.8.11: Basic construction of bipolar junction transistors. 

 

The centre section of a transistor is the base; it is extremely thin, often about     ×      ). 
The outer sections compose the emitter, which is the thinner of the two, and the collector, which is 
the thicker one.  

The pn junction joining the base region and the emitter region is called the base-emitter 
junction. The junction joining the base region and the collector region is called the base 
collector junction, as indicated in Figure 11.8.11(b). A wire lead connects to each of the 
three regions, as shown. These leads are labeled E, B, and C for emitter, base, and collector, 
respectively. The base material is lightly doped and very narrow compared to the heavily 
doped emitter and collector materials. 

Figure 11.8.12 shows the schematic symbols for the npn and pnp bipolar transistors. Notice 
that the emitter terminal has an arrow. The term bipolar refers to the use of both holes and 
electrons as charge carriers in the transistor structure.  

 

Fig. 11.8.12: Transistor symbols 
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Transistor Biasing 

In order for a transistor to operate properly as an amplifier, the two pn junctions must be correctly 
biased with external dc voltages. Figure 11.8.13 shows the proper bias arrangement for both npn 
and pnp transistors. Notice that in both cases the base-emitter (BE) junction is forward-biased and 
the base-collector (BC) junction is reverse-biased. This is called forward-reverse bias. 

 

 

Fig. 11.8.13: Forward-reverse bias of a BJT. 

 

Transistor Currents 

The directions of current in an npn and a pnp transistor are as shown in Figure 11.8.14(a) and (b), 
respectively. An examination of these diagrams shows that the emitter current is the sum of the 
collector and base currents, expressed as follows: 

         

 

Fig. 11.8.14: Transistor currents 

 

Transistor Voltages 

The three dc voltages for the biased transistor in Figure 5 are the emitter voltage (VE), the collector 
voltage (VC), and the base voltage (VB). These voltages are with respect to ground. 
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The collector voltage is equal to the dc supply voltage, VCC, less the drop across RC. 

            

The base voltage is equal to the emitter voltage plus the base-emitter junction barrier potential 
(VBE), which is about 0.7 V for a silicon transistor. 

          

In the configuration of Figure 11.8.15, the emitter is the common (grounded) terminal, so VE = 0 V 
and VB = 0.7 V. 

 

Fig. 11.8.15: Bias voltages 

 

Transistor Application 

Sound systems for musicians are a specific use of a transistor amplifier. A small voltage signal can be 
picked up from an electric guitar, amplified in a transistor circuit, and sent to an output speaker. 
Figure 11.8.16 shows a p-n-p transistor circuit with a variable input signal and the output signal 
across the resistor to the loudspeaker. Small changes in the voltage input to the transistor in the 
emitter circuit result in large changes in the voltage output in the collector circuit. The output is a 
loudspeaker with a resistance, R. The transistor amplifier shown is a voltage amplifier. Amplification 
occurs because the collector voltage is larger than the emitter voltage. 

 

Fig.11.8.16: Transistor amplifies small input voltage into large output voltage 
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11.9 Summary 

Coulomb’s law describes the electrostatic force (or electric force) between two charged  articles. If 

the particles have charges 1q  and 2q , are separated by distance r , and are at rest then the 

magnitude of the force acting on each due to the other is given by 
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The electric field is defined as          0/ qFE
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The electric field vector E
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 is tangent to the electric field lines at every point. 

Electric Potential The electric potential V at a point P in the electric field of a charged object is 
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The average electric current avI  in a conductor is defined as  tQI av  / . 

Resistance of a Conductor The resistance R of a conductor is defined as IVR / . 

Ohm’s law describes many conductors for which the applied voltage is directly proportional to the 
current it causes. The proportionality constant is the resistance:  

                                                                                IRV   

The power delivered to a resistor can be expressed as 

                                                                               ./22 RVRIP   

The terminal voltage IRV  is given by  

                                                                         IrV    

For N resistors connected in series the equivalent resistance is given by    
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For N resistors connected in parallel the equivalent resistance is given by    
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Kirchhoff’s rules  

1. The sum of the currents entering any junction must equal the sum of the currents leaving 
that junction.  

2. The sum of the potential differences across all the elements around any closed circuit loop 
must be zero. 
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Semiconductor atoms have four valence electrons. Both germanium (Ge) and silicon (Si) are 
examples of semiconductor materials. 

A pure semiconductor material with only one type of atom is called an intrinsic semiconductor. An 
intrinsic semiconductor is neither a good conductor nor a good insulator. 

An extrinsic semiconductor is a semiconductor with impurity atoms added to it through a process 
known as doping. Doping increases the conductivity of a semiconductor material. 

A diode is a unidirectional device that allows current to flow through it in only one direction. 

Majority current carrier is the dominant type of charge carrier in a doped semiconductor material. In 
an n –type semiconductor, free electrons are the majority current carriers, whereas in a p -type 
semiconductor, holes are the majority current carriers. 

Minority current carrier is the type of charge carrier that appears sparsely throughout a doped 
semiconductor material. In an n -type semiconductor, holes are the minority current carriers, 
whereas free electrons are the minority current carriers in a p –type semiconductor 

n -type semiconductor is a semiconductor that has been doped with pentavalent impurity atoms. 
The result is a large number of free electrons throughout the material. Since the electron is the basic 
particle of negative charge, the material is called n -type semiconductor material. 

p -type semiconductor is a semiconductor that has been doped with trivalent impurity atoms. The 
result is a large number of holes in the material. Since a hole exhibits a positive charge, the material 
is called p -type semiconductor material.  

A diode is forward-biased by making its anode positive relative to its cathode. A diode is reverse-
biased by making its anode negative relative to its cathode. 

A forward-biased diode has relatively low resistance, whereas a reverse biased diode has very high 
resistance. 

A bipolar junction transistor (BJT) consists of three regions: emitter, base, and collector. A terminal is 
connected to each of the three regions. 

The base is a very thin and lightly doped region that is sandwiched between the emitter and 
collector regions. 

The emitter region is the most heavily doped region in a transistor. Its function is to emit or inject 
current carriers into the base region. 

The collector region is moderately doped and is the largest of all three transistor regions. Most of 
the current carriers injected into the base are attracted into the collector region rather than flowing 
out from the base lead. 
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11.10 Conceptual Questions 

1. Figure 11-34 shows four situations in which charged particles are fixed in place on an axis. In 
which situations is there a point to the left of the particles where an electron will be in 
equilibrium? 

 

2. In fair weather, there is an electric field at the surface of the Earth, pointing down into the 
ground. What is the sign of the electric charge on the ground in this situation? 

3. Figure 11.35 shows three arrangements of electric field lines. In each arrangement, a proton is 
released from rest at point A and is then accelerated through point B by the electric field. Points 
A and B have equal separations in the three arrangements. Rank the arrangements according to 
the linear momentum of the proton at point B, greatest first. 

 

4. True or False: If a proton and electron both move through the same displacement in an electric 
field, the change in potential energy associated with the proton must be equal in magnitude 
and opposite in sign to the change in potential energy associated with the electron. 

5. When is more power delivered to a light bulb, immediately after it is turned on and the glow of 
the filament is increasing or after it has been on for a few seconds and the glow is steady? 

6. Suppose the energy transferred to a dead battery during charging is W. The recharged battery is 
then used until fully discharged again. Is the total energy transferred out of the battery during 
use also W? 

7. List the ways in which magnetic field lines and electric field lines are similar. 

8. Noting that the magnetic field lines of a bar magnet resemble the electric field lines of a pair of 

equal and opposite charges, do you expect the magnetic field to rapidly decrease in strength 

with distance from the magnet? Is this consistent with your experience with magnets? 

Fig.11.34 

Fig.11.35 
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9. If a charged particle moves in a straight line through some region of space, can you say that the 

magnetic field in that region is necessarily zero? 

10. How can the motion of a charged particle be used to distinguish between a magnetic and an 

electric field? 

11. What are the signs of the charges on the particles (a, b, c) in the figure below. 

 

12. Which of the particles (a or b) in the figure below has the greatest velocity, the greatest mass, 

assuming they have identical charges and masses? 

 

13. While operating, a TV monitor is placed on its side during maintenance. The image on the 

monitor changes color and blurs slightly. Discuss the possible relation of these effects to the 

Earth’s magnetic field. 

14. If you have three parallel wires in the same plane  with currents in the outer two running in 

opposite directions, is it possible for the middle wire to be repelled by both? Attracted by both? 

Explain.  

15. Suppose two long straight wires run perpendicular to one another without touching. Does one 

exert a net force on the other? If so, what is its direction? Does one exert a net torque on the 

other? If so, what is its direction? Justify your responses by using the right-hand rules. 

16. Electric field lines can be shielded by the Faraday cage effect. Can we have magnetic shielding? 

Can we have gravitational shielding? 

17. Does dropping a magnet down a copper tube produce a current in the tube? Explain. 

18. A bar magnet is held stationary while a circular loop of wire is moved toward the magnet at 

constant velocity at position A as shown in the figure below. The loop passes over the magnet’s 

center at position B and moves away from the magnet at position C. Viewing the loop from the 

left as indicated in the figure, find the direction of the induced current in the loop (a) at position 
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A and (b) at position C. (c) What is the induced current in the loop at position B? Indicate the 

directions as either CW (for clockwise) or CCW (for counterclockwise). 

 

 

19. What is meant by the term intrinsic? 

20. How are holes created in an intrinsic semiconductor? 

21. Why is current established more easily in a semiconductor than in an insulator? 

22. How is an n-type semiconductor formed? How is a p-type semiconductor formed? 

23. What are majority carriers? 

24. What is a pn junction? 

25. When p and n regions are joined, a depletion region forms. Describe the characteristics of the 
depletion region. 

26. Name the two bias conditions. 

27. Which bias condition produces majority carrier current? 

28. Which bias condition produces a widening of the depletion region? 

29. Minority carriers produce the current during reverse breakdown. (True or False) 

 

11.11 Problems 

1. Suppose that in a lightning flash the potential difference between a cloud and the ground is 
   ×     and the quantity of charge transferred is 30 C. (a) what is the change in energy of 
that transferred charge? (b) If all the energy released could be used to accelerate a 1000 kg car 
from rest, what would be its final speed? 

2. Calculate the magnitude and direction of the Coulomb force on each of the three charges 
shown in Figure 11.36. 

 

 

3. An electric field of magnitude 5  5 ×        points due south at a certain location. Find the 
magnitude and direction of the force on a  6     charge at this location. 

Fig. 11.36 
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4. A particle of mass    ×       and charge 3    is moving in a vacuum chamber where the 
electric field has magnitude    ×        and is directed straight upward. Neglecting other 
forces except gravity, calculate the particle’s (a) acceleration and (b) velocity after 2.00 s if it has 
an initial velocity of 5.00 m/s in the downward direction. 

5. Two       resistors are connected in parallel and this group is connected in series with a 4    
resistor. What is the total resistance of the circuit? 

6. Four resistors are connected to a battery with a terminal voltage of 12 V, as shown in Figure 
11.37. (a) How would you reduce the circuit to an equivalent single resistor connected to the 
battery? Use this procedure to find the equivalent resistance of the circuit. (b) Find the current 
delivered by the battery to this equivalent resistance. (c) Determine the power delivered by the 
battery. (d) Determine the power delivered to the 5     resistor. 

 

 

7. In Fig. 11.38, the ideal batteries have     5    and     5    and the resistances 
are   3     and        . If the potential at P is 100 V, what is it at Q? 

8. Four  8    resistors are connected in parallel across a 25.0 V ideal battery. What is the current 
through the battery? 

9. Two 56     resistors are placed in series across a 400 V supply. Calculate the current drawn. 

10. When four identical hotplates on a cooker are all in use, the current drawn from a 240 V supply 
is 33 A. Calculate (a) the resistance of each hotplate, (b) the current drawn when only three 
plates are switched on. The hotplates are connected in parallel. 

11. Find the direction of the magnetic field acting on the positively charged particle moving in the 

various situations shown in the figures below if the direction of the magnetic force acting on it 

is as indicated. 

 

 
 

12. A proton moves perpendicular to a uniform magnetic field B at a speed of     ×     m/s and 

undergoes an acceleration of     ×        s  in the positive x-direction when its velocity is 

in the positive z-direction. Determine the magnitude and direction of the field. 

Fig. 11.37 

Fig.11.38 
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13. A proton (charge 1e, mass   ), a deuteron (charge 1e, mass 2  ), and an alpha particle 

(charge 12e, mass 4  ) are accelerated from rest through a common potential difference   . 

Each of the particles enters a uniform magnetic field B with its velocity in a direction 

perpendicular to B. The proton moves in a circular path of radius   . In terms of   , determine 

(a) the radius    of the circular orbit for the deuteron and (b) the radius    for the alpha 

particle. 

14. A current      A is directed along the positive x-axis and perpendicular to a magnetic field. A 

magnetic force per unit length of 0.12 N/m acts on the conductor in the negative y-direction. 

Calculate the magnitude and direction of the magnetic field in the region through which the 

current passes. 

15. A wire having a mass per unit length of 0.500 g/cm carries a 2.00-A current horizontally to the 

south. What are the direction and magnitude of the minimum magnetic field needed to lift this 

wire vertically upward? 

16. A wire is formed into a circle having a diameter of 10.0 cm and is placed in a uniform magnetic 

field of 3.00 mT. The wire carries a current of 5.00 A. Find the maximum torque on the wire. 

17. The two wires shown in the figure are separated by         cm and carry currents of 

         A in opposite directions. Find the magnitude and direction of the net magnetic field 

(a) at a point midway between the wires; (b) at point   , 10.0 cm to the right of the wire on the 

right; and (c) at point   ,         cm to the left of the wire on the left. 

 

18. A wire with a weight per unit length of 0.080 N/m is suspended directly above a second wire. 

The top wire carries a current of 30.0 A, and the bottom wire carries a current of 60.0 A. Find 

the distance of separation between the wires so that the top wire will be held in place by 

magnetic repulsion. 

19. It is desired to construct a solenoid that will have a resistance of 5.00 V (at 20°C) and produce a 

magnetic field of     ×     T at its center when it carries a current of 4.00 A. The solenoid is 

to be constructed from copper wire having a diameter of 0.500 mm. If the radius of the 

solenoid is to be 1.00 cm, determine (a) the number of turns of wire needed and (b) the length 

the solenoid should have. 

20. A long, straight wire lies in the plane of a circular coil with a radius of 0.010 m. The wire carries 

a current of 2.0 A and is placed along a diameter of the coil. (a) What is the net flux through the 

coil? (b) If the wire passes through the center of the coil and is perpendicular to the plane of the 

coil, what is the net flux through the coil? 

21. A 2.00 - m length of wire is held in an east–west direction and moves horizontally to the north 

with a speed of 15.0 m/s. The vertical component of Earth’s magnetic field in this region is 40.0 

mT directed downward. Calculate the induced emf between the ends of the wire and determine 

which end is positive. 
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22. Three loops of wire move near a long straight wire carrying a current as in the figure. What is 

the direction of the induced current, if any, in (a) loop A, (b) loop B, and (c) loop C? 
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12 Geometrical Optics 

 

Learning outcome 

After completing this section, students are expected to know about: 

 the Ray Aspect of Light 

 the Law of Reflection 

 the Law of Refraction 

 Image Formation by Lenses 

 Image Formation by Mirrors 

 

Introduction 

We know that visible light is the type of electromagnetic waves to which our eyes respond. That 
knowledge still leaves many questions regarding the nature of light and vision. What is color, and 
how do our eyes detect it? Why do diamonds sparkle? How does light travel? How do lenses and 
mirrors form images? These are but a few of the questions that are answered by the study of optics. 
Optics is the branch of physics that deals with the behaviour of visible light and other 
electromagnetic waves. In particular, optics is concerned with the generation and propagation of 
light and its interaction with matter. In this chapter we will concentrate on the propagation of light 
and its interaction with matter. 

 

12.1 The Ray Aspect of Light 

Learning outcome 

After completing this section, students are expected to  

 list the ways by which light travels from a source to another location. 

 

There are three ways in which light can travel from a source to another location. (See Figure 12.1.) It 
can come directly from the source through empty space, such as from the Sun to Earth. Or light can 
travel through various media, such as air and glass, to the person. Light can also arrive after being 
reflected, such as by a mirror. In all of these cases, light is modelled as traveling in straight lines 
called rays. Light may change direction when it encounters objects (such as a mirror) or in passing 
from one material to another (such as in passing from air to glass), but it then continues in a straight 
line or as a ray. The word ray comes from mathematics and here means a straight line that originates 
at some point. It is acceptable to visualize light rays as laser rays (or even science fiction depictions 
of ray guns). 
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Figure 12.1: Three methods for light to travel from a source to another location. (a) Light reaches the 
upper atmosphere of Earth traveling through empty space directly from the source. (b) Light can 
reach a person in one of two ways. It can travel through media like air and glass. It can also reflect 
from an object like a mirror. In the situations shown here, light interacts with objects large enough 
that it travels in straight lines, like a ray.  

 

When light interacts with objects or a medium, such as glass or water, it displays certain properties: 
it can be reflected, refracted, absorbed or transmitted. 

 

12.2 Reflection and Refraction 

12.2.1 Reflection 

Learning outcome 

After completing this section, students are expected to: 

 explain reflection of light from polished and rough surfaces. 

 understand the Law of reflection 

 

Reflection of light is the bouncing back of light when it falls on opaque bodies. To describe the 
reflection of light, we will use the following terminology. The incoming light ray is called the incident 
ray. The light ray moving away from the surface is the reflected ray. The most important 
characteristic of these rays is their angles in relation to the reflecting surface. These angles are 
measured with respect to the normal of the surface. The normal is an imaginary line perpendicular 
to the surface. The angle of incidence,    is measured between the incident ray and the surface 
normal. The angle of reflection,    is measured between the reflected ray and the surface normal. 
This is shown in Figure 12.2. 
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Figure 12.2: The angles of incidence and reflection are measured 
with respect to the normal to the smooth surface. 

 

Definition: Law of Reflection 

The angle of incidence is equal to the angle of reflection 

                                                                                                                      12.1         

and all the incident ray, reflected ray and the normal lie in the same plane.   

 

We also expect to see reflections when rays strikes from rough surfaces, at different angles, it is 
reflected in many different directions, or diffused.  Figure 12.3 illustrates how a rough surface 
reflects light. Here, the angle of incidence may or may not be equal to the angle of reflection. 

 

Figure 12.3: Light is diffused when it reflects from a rough surface. 
Here many parallel rays are incident, but they are reflected at many 
different angles since the surface is rough. 

 

The simplest example of the law of reflection is if the angle of incidence is 00. In this case, the angle 
of reflection is also 00. You see this when you look straight into a mirror. 
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Figure 12.4: When a light ray strikes a surface at right angles to 
the surface, then the ray is reflected directly back. 

 

Real world applications of reflection 

A parabolic reflector is a mirror or dish (e.g. a satellite dish) which has a parabolic shape. Some 
examples of very useful parabolic reflectors are car headlamps, spotlights, telescopes and satellite 
dishes. In the case of car headlights or spotlights, the outgoing light produced by the bulb is 
reflected by a parabolic mirror behind the bulb so that it leaves as a collimated beam (i.e. all the 
reflected rays are parallel). The reverse situation is true for a telescope where the incoming light 
from distant objects arrives as parallel rays and is focused by the parabolic mirror to a point, called 
the focus, where an image can be made. The surface of this sort of reflector has to be shaped very 
carefully so that the rays all arrive at the same focal point. 

 

 

Figure 12.5: On the left is a ray diagram showing how a telescope mirror works to collect 
incoming incident light (parallel rays) from a distant object such as a star or galaxy and 
focus the rays to a point where a detector e.g. a camera, can make an image. The diagram 
on the right shows how the same kind of parabolic reflector can cause light coming from a 
car headlight or spotlight bulb to be collimated. In this case the reflected rays are parallel. 

 

Exercise 12 – 1: Rays and Reflection 

1. Are light rays real? Explain. 

2. Which of the labels, A–H, in the diagram, correspond to the following: 
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a) normal 

b) angle of incidence 

c) angle of reflection 

d) incident ray 

e) reflected ray 

 

3. State the Law of Reflection. Draw a diagram, label the appropriate angles and write a 
mathematical expression for the Law of Reflection. 

4. A ray of light leaves a surface at 45_ to the normal to the surface. Draw a ray diagram 
showing the incident ray, reflected ray and surface normal. Calculate the angles of incidence 
and reflection and fill them in on your diagram. 

5. A ray of light strikes a surface at 25_ to the surface. Draw a ray diagram showing the incident 
ray, reflected ray and surface normal. Calculate the angles of incidence and reflection and fill 
them in on your diagram. 

6. A ray of light leaves a surface at 65_ to the surface. Draw a ray diagram showing the incident 
ray, reflected ray and surface normal. Calculate the angles of incidence and reflection and fill 
them in on your diagram. 

 

12.2.2 Refraction  

Learning outcome 

After completing this section, students are expected to:  

 determine the index of refraction, given the speed of light in a medium 

 explain the phenomenon of total internal reflection. 

 describe the workings and uses of fiber optics. 

 

When light moves from one medium into another (for example, from air to glass), the speed of light 
changes. If the light ray hits the boundary of the new medium (for example the edge of a glass block) 
at any angle which is not perpendicular to or parallel with the boundary, the light ray will change its 
direction through the next medium, or appear to ‘bend’. This is called refraction of light. It is 
important to note that while the speed of the light changes when it passes into the new medium, 
the frequency of the light remains the same. 
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The speed of light and therefore the degree of bending of the light depends on the refractive index 
of material through which the light passes. The refractive index (symbol n) is the ratio of the speed 
of light in a vacuum to its speed in the material. 

n = 
 

 
                                                      12.2 

Where, 

n = refractive index (no unit) 

c = speed of light in a vacuum (3 × 108 m·s−1) 

v = speed of light in a given medium (m·s−1) 

 

If the refractive index, n, increases, the speed of light in the material, v must decrease. Therefore 
light travels slower through materials of high refractive index, n. 

Table 12.1 shows refractive indices for various materials. Light travels slower in any material than it 
does in a vacuum, so all values for n are greater than 1. 

 

Table 12.1: Refractive indices of some materials. nair is calculated at standard temperature and 
pressure (STP). 

Medium Refractive Index 

Vacuum  1 

Air*  1.0002926 

Carbon dioxide 1.00045 

Water: Ice  1.31 

Water: Liquid (20oC)  1.333 

Ethyl Alcohol (Ethanol)  1.36 

Glycerine  1.4729 

Rock salt  1.516 

Crown Glass  1.52 

Sodium chloride  1.54 

Glass (typical)  1.5 to 1.9 

Diamond  2.419 

Silicon  4,01 

Zircon  1.923 

 

Representing Refraction with Ray diagrams 

Before we draw the diagrams we need to define the following important concepts. 
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Definitions: 

The normal to a surface is the line which is perpendicular to the plane of the surface. 

Incident Ray is the path along which the light is in the first medium. 

Refracted Ray is the path along which the light is in the second medium. 

Denser medium is a medium in which the speed of light is less. 

Less Dense medium is a medium in which the speed of light is greater 

The angle of incidence is the angle defined between the normal to a surface and the incoming 
(incident) light ray. 

The angle of refraction is the angle defined between the normal to a surface and the refracted 
light ray. 

 

Figure 12.6: The diagram shows the boundary between two media: water (Denser medium) and air 
(Less Dense medium). An incoming light ray is refracted when it passes through the surface of the 
water into the air. The angle of incidence is ϴ1 and the angle of refraction is ϴ2.  

 

Figure 12.7: Light is moving from an optically less dense medium to an optically denser medium. 

 

Example 

Calculate the speed of light in zircon, a material used in jewellery to imitate diamond. 

Strategy 
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The speed of light in a material, v, can be calculated from the index of refraction n of the material 
using the equation n = c / v. 

Solution 

Rearranging Eq. 12.2 to determine v gives 

  
 

 
. 

The index of refraction for zircon is given as 1.923 in Table 12.1, and c is the speed of light. Entering 
these values in the last expression gives 

  
3            

  9 3
   56          

 

Snell’s Law 

Now that we know that the degree of bending, or the angle of refraction, is dependent on the 
refractive index of a medium, how do we calculate the angle of refraction? The answer to this 
question was discovered by a Dutch physicist called Willebrand Snell in 1621 and is now called 
Snell’s Law or the Law of Refraction. 

 

DEFINITION: Snell’s law 

  s       s                                                              12.3 

Where 

   = Refractive index of material 1 

   = Refractive index of material 2 

   = Angle of incidence 

   = Angle of refraction 

If      , then from Snell’s Law, s     s     . For angles smaller than 90°, s     increases as 
   increases. Therefore,      . This means that the angle of incidence is greater than the angle of 
refraction and the light ray is bent toward the normal. 

Similarly, if       then from Snell’s Law, s     s     . For angles smaller than 90°, s      
increases as    increases. Therefore,      . This means that the angle of incidence is less than 
the angle of refraction and the light ray is bent away from the normal. 

 

Example 

Light is refracted at the boundary between water and an unknown medium. If the angle of incidence 
is 25°, and the angle of refraction is 20.6°, calculate the refractive index of the unknown medium and 
use Table 12.1 to identify the material. 

 

Solution: 

  s       s     
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s    

s    
  

     333 ×
s   5°

s     6°
  

     66 

 

According to Table 5.1, typical glass has a refractive index between 1.5 to 1.9. Therefore, the 
unknown medium is typical glass. 

 

Critical angles and total internal reflection 

DEFINITION: Critical angle 

The critical angle is the angle of incidence where the angle of refraction is 90°. 
The light must travel from an optically denser medium to an optically less dense 
medium. 

 

Figure 12.8: When the angle of incidence is equal to the 
critical angle, the angle of refraction is equal to 90o. 

 

Total internal reflection 

If the angle of incidence is bigger than this critical angle, the refracted ray will not emerge from the 
medium, but will be reflected back into the medium. This is called total internal reflection. 

 

The conditions for total internal reflection are: 

1. light is travelling from an optically denser medium (higher refractive index) to an optically 
less dense medium (lower refractive index). 

2. the angle of incidence is greater than the critical angle. 
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Figure 12.9: When the angle of incidence is greater than the critical angle, 
the light ray is reflected at the boundary of the two media and total 
internal reflection occurs. 

 

Example 

Given that the refractive indices of air and water are 1.00 and 1.33 respectively, find the critical 
angle. 

Given: 

             33    9 °       

Calculate      . 

Solution: 

sin ϴc = n2 sin 90o  

         = n2 sin 90o / n1 

ϴc= sin-1(n2 sin 90o / n1) 

    = sin-1(1 /1.33) 

    = 48.8o 

 

For incident angles smaller than 48.8o refraction will occur. For incident angles greater than 48.8°, 
total internal reflection will occur. For incident angles equal to 48.8° refraction will occur at 90°. The 
following ray diagrams show the path of light in each situation and also the situation where light is 
travelling from an optically less dense medium (higher refractive index) to an optically dense 
medium (lower refractive index). 
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Figure 12.10: Ray diagrams show the path of light based on the above example 
and also the situation where light is travelling from an optically less dense to an 
optically dense medium. 

 

Total internal reflection is a very useful natural phenomenon since it can be used to confine light. 
One of the most common applications of total internal reflection is in fibre optics. An optical fibre is 
a thin, transparent fibre, usually made of glass or plastic, for transmitting light. Optical fibres are 
usually thinner than a human hair! The construction of a single optical fibre is shown in Figure 12.11. 

 

 

Figure 12.11: Structure of a single optical fiber. 

 

Optical fibres are most common in telecommunications, because information can be transported 
over long distances, with minimal loss of data. This gives optical fibres an advantage over 
conventional cables. Optic fibres are also used in medicine in endoscopes. 

 

 



General Physics Module Phys 1011 AAU 

  

Geometrical Optics  345 

 

12.3 Image formation by thin Lenses and Mirrors  

Learning outcomes 

After completing this section, students are expected to: 

 describe the formation of images using the rules of ray tracking. 

 determine the power of a lens given the focal length. 

 illustrate image formation in mirrors. 

 determine focal length and magnification of a lens. 

This section covers the formation of images when plane and spherical light waves fall on plane and 
spherical surfaces. Images can be formed by reflection from mirrors or by refraction through lenses. 
In our study of mirrors and lenses, we continue to assume light travels in straight lines (the ray 
approximation), ignoring diffraction. 

 

12.3.1 Image Formation by Lenses 

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to 

the eye to a camera’s zoom lens. In this section, we will use the law of refraction to explore the 
properties of lenses and how they form images. 

 

The Converging (or convex) lens 

The shape of which is similar to the convex lens in Figure 12.12. The convex lens shown has been 
shaped so that all light rays that enter it parallel to its axis cross one another at a single point on the 
opposite side of the lens. (The axis is defined to be a line normal to the lens at its center, as shown in 
Figure 12.12.) Such a lens is called a converging (or convex) lens for the converging effect it has on 
light rays. An expanded view of the path of one ray through the lens is shown, to illustrate how the 
ray changes direction both as it enters and as it leaves the lens. Since the index of refraction of the 
lens is greater than that of air, the ray moves towards the perpendicular as it enters and away from 

the perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens’s 
shape, light is thus bent toward the axis at both surfaces. The point at which the rays cross is defined 
to be the focal point F of the lens. The distance from the center of the lens to its focal point is 
defined to be the focal length f of the lens.  

 
Figure 12.12: Rays of light entering a converging lens parallel to its axis converge at 
its focal point F. (Ray 2 lies on the axis of the lens.) The distance from the center of 
the lens to the focal point is the lens’s focal length f.   

 



General Physics Module Phys 1011 AAU 

  

Geometrical Optics  346 

 

The greater effect a lens has on light rays, the more powerful it is said to be. For example, a powerful 
converging lens will focus parallel light rays closer to it and will have a smaller focal length than a 
weak lens. The light will also focus into a smaller and more intense spot for a more powerful lens. 
The power P of a lens is defined to be the inverse of its focal length. In equation form, this is 

P = 
 

 
                                                         12.4 

Where, f is the focal length of the lens, which must be given in meters (and not cm or mm). The 
power of a lens P has the unit diopters (D), provided that the focal length is given in meters. That is, 
1 D = 1 / m.  (Note that this power (optical power, actually) is not the same as power in watts 
defined in Work, Energy, and Energy Resources. It is a concept related to the effect of optical devices 
on light.) Optometrists prescribe common spectacles and contact lenses in units of diopters. 

 

The diverging (or concave) lens 

The concave lens is a diverging lens; because it causes the light rays to bend away (diverge) from its 
axis. In this case, the lens has been shaped so that all light rays entering it parallel to its axis appear 
to originate from the same point, F, defined to be the focal point of a diverging lens. The distance 
from the center of the lens to the focal point is again called the focal length f of the lens. Note that 
the focal length and power of 

 

Figure 12.13: Rays of light entering a diverging lens parallel to its axis are diverged, and 

all appear to originate at its focal point F. The dashed lines are not rays—they indicate 
the directions from which the rays appear to come. The focal length f of a diverging lens 
is negative. An expanded view of the path taken by ray 1 shows the perpendiculars and 
the angles of incidence and refraction at both surfaces. 

 

Thin Lenses  

A thin lens is defined to be one whose thickness allows rays to refract but does not allow properties 
such as dispersion and aberrations. 

A thin lens is defined to be one whose thickness allows rays to refract, as illustrated in Figure 12.12, 
but does not allow properties such as dispersion and aberrations. An ideal thin lens has two 
refracting surfaces but the lens is thin enough to assume that light rays bend only once. A thin 
symmetrical lens has two focal points, one on either side and both at the same distance from the 
lens. (See Figure 12.14.) Another important characteristic of a thin lens is that light rays through its 
center are deflected by a negligible amount, as seen in Figure 12.15. 
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Figure 12.14: Thin lenses have the same focal length on either side. (a) Parallel light rays 
entering a converging lens from the right cross at its focal point on the left. (b) Parallel 
light rays entering a diverging lens from the right seem to come from the focal point on 
the right. 

 

Figure 12.15: The light ray through the center of a thin lens is deflected by a negligible 
amount and is assumed to emerge parallel to its original path (shown as a shaded 
line). 

 

Rules for Ray Tracing 

1. A ray entering a converging lens parallel to its axis passes through the focal point F of the 
lens on the other side. 

2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F. 

3. A ray passing through the center of either a converging or a diverging lens does not change 
direction. 

4. A ray entering a converging lens through its focal point exits parallel to its axis. 

 

Image Formation by Thin Lenses 

In some circumstances, a lens forms an obvious image, such as when a movie projector casts an 
image onto a screen. In other cases, the image is less obvious. Where, for example, is the image 
formed by eyeglasses? We will use ray tracing for thin lenses to illustrate how they form images, and 
we will develop equations to describe the image formation quantitatively. 
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Image Formation by a converging lens 

Case 1: when an object is held farther to a converging lens than its focal length 

Consider an object some distance away from a converging lens, as shown in Figure 12.15. To find the 
location and size of the image formed, we trace the paths of selected light rays originating from one 
point on the object, in this case the top of the person’s head. The figure shows three rays from the 
top of the object that can be traced using the ray tracing rules given above. (Rays leave this point 
going in many directions, but we concentrate on only a few with paths that are easy to trace.) The 
first ray is one that enters the lens parallel to its axis and passes through the focal point on the other 
side (rule 1). The second ray passes through the center of the lens without changing direction (rule 
3). The third ray passes through the nearer focal point on its way into the lens and leaves the lens 
parallel to its axis (rule 4). The three rays cross at the same point on the other side of the lens. The 
image of the top of the person’s head is located at this point. All rays that come from the same point 
on the top of the person’s head are refracted in such a way as to cross at the point shown. Rays from 
another point on the object, such as her belt buckle, will also cross at another common point, 
forming a complete image, as shown. Although three rays are traced in Figure 12.16, only two are 
necessary to locate the image. It is best to trace rays for which there are simple ray tracing rules. 
Before applying ray tracing to other situations, let us consider the example shown in Figure 12.16 in 
more detail. 

 

Figure 12.16: Ray tracing is used to locate the image formed by a lens. Rays originating from the 

same point on the object are traced—the three chosen rays each follow one of the rules for ray 
tracing, so that their paths are easy to determine. The image is located at the point where the rays 

cross. In this case, a real image—one that can be projected on a screen—is formed. 

 

The image formed in Figure 12.16 is a real image, meaning that it can be projected. That is, light rays 
from one point on the object actually cross at the location of the image and can be projected onto a 
screen, a piece of film, or the retina of an eye. 
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Several important distances appear in Figure 12.16. We define do to be the object distance, the 
distance of an object from the center of a lens. Image distance di is defined to be the distance of the 
image from the center of a lens. The height of the object and height of the image are given the 
symbols ho and hi, respectively. Images that appear upright relative to the object have heights that 
are positive and those that are inverted have negative heights. Using the rules of ray tracing and 
making a scale drawing with paper and pencil, like that in Figure 12.15, we can accurately describe 
the location and size of an image. But the real benefit of ray tracing is in visualizing how images are 
formed in a variety of situations. To obtain numerical information, we use a pair of equations that 
can be derived from a geometric analysis of ray tracing for thin lenses. The thin lens equations are 

 

  
  

 

  
 

 

 
                                                     12.5 

and 

  

  
    

  

  
                                                     12.6 

Where m is defined as the magnification and is equal to the ratio of image height to object height (hi 

/ ho). (The minus sign in the equation above will be discussed shortly.) The thin lens equations are 

broadly applicable to all situations involving thin lenses (and “thin” mirrors, as we will see later). 
We will explore many features of image formation in the following worked examples. 

 

Case 2: when an object is held closer to a converging lens than its focal length 

The image formed when an object is held closer to a converging lens than its focal length is upright, 
magnified, virtual image (see Figure 12.18)  

 

Figure 12.18: Ray tracing predicts the image location and size for an object held 
closer to a converging lens than its focal length. Ray 1 enters parallel to the axis 
and exits through the focal point on the opposite side, while ray 2 passes 
through the center of the lens without changing path. The two rays continue to 
diverge on the other side of the lens, but both appear to come from a common 
point, locating the upright, magnified, virtual image. This is a case 2 image. 
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Case 3: when image is formed by a diverging 

A third type of image is formed by a diverging or concave lens. The image that is upright but smaller 
than the object. This means that the magnification is positive but less than 1. The ray diagram in 
Figure 12.19 shows that the image is on the same side of the lens as the object and, hence, cannot 

be projected—it is a virtual image. Note that the image is closer to the lens than the object.  

 

Figure 12.19:  Ray tracing predicts the image location and size for a concave or diverging 
lens. Ray 1 enters parallel to the axis and is bent so that it appears to originate from the 
focal point. Ray 2 passes through the center of the lens without changing path. The two 
rays appear to come from a common point, locating the upright image. This is a case 3 
image, which is closer to the lens than the object and smaller in height. 

 

Table 12.2: summarizes the three types of images formed by single thin lenses. These are referred to 
as case 1, 2, and 3 images. Convex (converging) lenses can form either real or virtual images (cases 1 
and 2, respectively), whereas concave (diverging) lenses can form only virtual images (always case 
3).  

 

Case Formed When Image Type    m 

1 f positive, do > f real positive negative 

2 f positive, do < f virtual negative Positive m > 1 

3 F negative virtual negative Positive m < 1 
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12.3.2 Image Formation by Mirrors 

Images in Plane Mirrors 

Figure 12.19 helps illustrate how a flat mirror forms an image. Two rays are shown emerging from the 

same point, striking the mirror, and being reflected into the observer’s eye. The rays can diverge 

slightly, and both still get into the eye. If the rays are extrapolated backward, they seem to originate 

from a common point behind the mirror, locating the image. (The paths of the reflected rays into the 

eye are the same as if they had come directly from that point behind the mirror.) Using the law of 

reflection—the angle of reflection equals the angle of incidence—we can see that the image and object 

are the same distance from the mirror di, = do.  Also, the image and object heights are the same and 

hence the magnification, M, which is the ratio of image size to object size becomes one. 

The image formed by a flat mirror is a virtual, since it cannot be projected—the rays only appear to 

originate from a common point behind the mirror. Obviously, if you walk behind the mirror, you 

cannot see the image, since the rays do not go there. But in front of the mirror, the rays behave exactly 

as if they had come from behind the mirror, so that is where the image is situated. 

 

  

Figure 12.19: Two sets of rays from common points on an object are 

reflected by a flat mirror into the eye of an observer. The reflected rays seem 

to originate from behind the mirror, locating the virtual image. 

 

Spherical Mirrors 

Consider the focal length of a mirror—for example, the concave spherical mirrors in Figure 12.20. 

Rays of light that strike the surface follows the law of reflection. For a mirror that is large compared 

with its radius of curvature, as in Figure 12.20(a), we see that the reflected rays do not cross at the 

same point, and the mirror does not have a well-defined focal point. If the mirror had the shape of a 

parabola, the rays would all cross at 

a single point, and the mirror would have a well-defined focal point. But parabolic mirrors are much 

more expensive to make than spherical mirrors. The solution is to use a mirror that is small compared 

with its radius of curvature, as shown in Figure 12.20(b). (This is the mirror equivalent of the thin lens 

approximation.) To a very good approximation, this mirror has a well-defined focal point at F that is 



General Physics Module Phys 1011 AAU 

  

Geometrical Optics  352 

 

the focal distance f from the center of the mirror. The focal length f of a concave mirror is positive, 

since it is a converging mirror. 

 

Figure 12.20: (a) Parallel rays reflected from a large spherical mirror do not all cross at a common 

point. (b) If a spherical mirror is small compared with its radius of curvature, parallel rays are focused 

to a common point.  

 

The distance of the focal point from the center of the mirror is its focal length f. Since this mirror is 

converging, it has a positive focal length. Just as for lenses, the shorter the focal length, the more 

powerful the mirror; thus, P = 1 / f for a mirror, too. A more strongly curved mirror has a shorter focal 

length and a greater power. Using the law of reflection and some simple trigonometry, it can be 

shown that the focal length is half the radius of curvature, or 

f =   
 

 
.                                                         12.7 

Where, R is the radius of curvature of a spherical mirror. The smaller the radius of curvature, the 

smaller the focal length and, thus, the more powerful the mirror is. 

The convex mirror shown in Figure 12.21 also has a focal point. Parallel rays of light reflected from 

the mirror seem to originate from the point F at the focal distance f behind the mirror. The focal 

length and power of a convex mirror are negative, since it is a diverging mirror. 
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Figure 12.21: Parallel rays of light reflected from a convex spherical mirror (small in size compared 

with its radius of curvature) seem to originate from a well-defined focal point at the focal distance f 

behind the mirror. Convex mirrors diverge light rays and, thus, have a negative focal length. 

Ray tracing is as useful for mirrors as for lenses. The rules for ray tracing for mirrors are based on the 

illustrations just discussed: 

1. A ray approaching a concave converging mirror parallel to its axis is reflected through the 

focal point F of the mirror on the same side. (See rays 1 and 3 in Figure 12.20(b).) 

2. A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to 

come from the focal point F behind the mirror. (See rays 1 and 3 in Figure 12.21.) 

3. Any ray striking the center of a mirror is followed by applying the law of reflection; it makes 

the same angle with the axis when leaving as when approaching. (See ray 2 in Figure 12.22.) 

4. A ray approaching a concave converging mirror through its focal point is reflected parallel to 

its axis. (The reverse of rays 1 and 3 in Figure 12.20.) 

5. A ray approaching a convex diverging mirror by heading toward its focal point on the 

opposite side is reflected parallel to the axis. (The reverse of rays 1 and 3 in Figure 12.21.) 

 

We will use ray tracing to illustrate how images are formed by mirrors, and we can use ray tracing 

quantitatively to obtain numerical information. But since we assume each mirror is small compared 

with its radius of curvature, we can use the thin lens equations for mirrors just as we did for lenses. 

 

Consider the situation shown in Figure 12.22, concave spherical mirror reflection, in which an object 

is placed farther from a concave (converging) mirror than its focal length. That is, f is positive and do 

> f, so that we may expect an image similar to the case 1 real image formed by a converging lens. Ray 

tracing in Figure 12.22 shows that the rays from a common point on the object all cross at a point on 

the same side of the mirror as the object. Thus a real image can be projected onto a screen placed at 

this location. The image distance is positive, and the image is inverted, so its magnification is 

negative. This is a case 1 image for mirrors. It differs from the case 1 image for lenses only in that the 

image is on the same side of the mirror as the object. It is otherwise identical. 

 

Figure 12.22: A case 1 image for a mirror. An object is farther from the converging mirror 

than its focal length. Rays from a common point on the object are traced using the rules in 

the text. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 

3 goes through the focal point on the way toward the mirror. All three rays cross at the 

same point after being reflected, locating the inverted real image. Although three rays are 

shown, only two of the three are needed to locate the image and determine its height. 
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If an object is closer to a concave mirror than its focal length (do < f and f positive), which is a 

magnifier, rays from a common point on the object are reflected in such a manner that they appear to 

be coming from behind the mirror, meaning that the image is virtual and cannot be projected. As with 

a magnifying glass, the image is upright and larger than the object. This is a case 2 image for mirrors 

and is exactly analogous to that for lenses. 

 

Figure 12.23: Images formed when a converging mirror has an object closer to it than 

its focal length. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the 

mirror, and ray 3 approaches the mirror as if it came from the focal point. 

 

All three rays appear to originate from the same point after being reflected, locating the upright virtual 

image behind the mirror and showing it to be larger than the object. Makeup mirrors are perhaps the 

most common use of a concave mirror to produce a larger, upright image. 

A convex mirror is a diverging mirror (f is negative) and forms only one type of image. The image 

formed is upright and smaller than the object, just as for diverging lenses. Figure 25.46(a) uses ray 

tracing to illustrate the location and size of the case 3 image for mirrors. Since the image is behind the 

mirror, it cannot be projected and is thus a virtual image. It is also seen to be smaller than the object. 

 

 

Figure 12.24: Case 3 images for mirrors are formed by any convex mirror. Ray 1 

approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 

approaches toward the focal point. All three rays appear to originate from the same 

point after being reflected, locating the upright virtual image behind the mirror and 

showing it to be smaller than the object.  
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Security mirrors are convex, producing a smaller, upright image. Because the image is smaller, a 

larger area is imaged compared to what would be observed for a flat mirror (and hence security is 

improved).  

 

 

Example 

A clear glass light bulb is placed 0.750 m from a convex lens having a 0.500 m focal length, as shown 

in Figure 25.35. Use ray tracing to get an approximate location for the image. Then use the thin lens 

equations to calculate (a) the location of the image and (b) its magnification. Verify that ray tracing 

and the thin lens equations produce consistent results. 

 

 

Figure 12.17: A light bulb placed 0.750 m from a lens having a 0.500 m focal length 

produces a real image on a poster board as discussed in the example above. Ray 

tracing predicts the image location and size. 

 

Solutions  

Rearranging the thin lens equations to isolate di gives: 

 

  
 

 

 
 

 

  
 

Noting that do = 0.750 m and f = 0.500 m. 

 

  
 

  667

 
 

This must be inverted to find di: 

     5   

The magnification m is then obtained using the values of both di and do as. 

   
  

  
   

  5  

  75  
        

Note that the minus sign causes the magnification to be negative when the image is inverted. Ray 

tracing and the use of the thin lens equations produce consistent results. The thin lens equations give 

the most precise results, being limited only by the accuracy of the given information. Ray tracing is 

limited by the accuracy with which you can draw, but it is highly useful both conceptually and 

visually. 
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12.4 Chapter Summary 

The Ray Aspect of Light 

 A straight line that originates at some point is called a ray. 

 The part of optics dealing with the ray aspect of light is called geometric optics. 

 Light can travel in three ways from a source to another location: (1) directly from the source 
through empty space; (2) through various media; (3) after being reflected from a mirror. 

The Law of Reflection 

 The angle of reflection equals the angle of incidence. 

 A mirror has a smooth surface and reflects light at specific angles. 

 Light is diffused when it reflects from a rough surface. 

 Mirror images can be photographed and videotaped by instruments. 

The Law of Refraction 

 The changing of a light ray’s direction when it passes through variations in matter is called 
refraction. 

 The speed of light in vacuum c = 2.99792458×108 m/s ≈ 3.00×108 m/s. 

 Index of refraction   
 

 
  , where v is the speed of light in the material, c is the speed of light 

in vacuum, and n is the index of refraction.   

 Snell’s law, the law of refraction, is stated in equation form as n1 sin θ1 = n2 sin θ2. 

Total Internal Reflection 

 The incident angle that produces an angle of refraction of 90º is called critical angle. 

 Total internal reflection is a phenomenon that occurs at the boundary between two 
mediums, such that if the incident angle in the first medium is greater than the critical angle, 
then all the light is reflected back into that medium. 

 Fiber optics involves the transmission of light down fibers of plastic or glass, applying the 
principle of total internal reflection. 

Image formation by Lenses 

 Light rays entering a converging lens parallel to its axis cross one another at a single point on 
the opposite side. 

 For a converging lens, the focal point is the point at which converging light rays cross; for a 
diverging lens, the focal point is the point from which diverging light rays appear to 
originate. 

 The distance from the center of the lens to its focal point is called the focal length f. 
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 Power P of a lens is defined to be the inverse of its focal length, 

  
 

 
 

 A lens that causes the light rays to bend away from its axis is called a diverging lens. 

 Ray tracing is the technique of graphically determining the paths that light rays take. 

 The image in which light rays from one point on the object actually cross at the location of 
the image and can be projected onto a screen, a piece of film, or the retina of an eye is 
called a real image. 

 Thin lens equations are 
 

  
  

 

  
 

 

 
   and  

  

  
    

  

  
    = m (magnification). 

 The distance of the image from the center of the lens is called image distance. 

 An image that is on the same side of the lens as the object and cannot be projected on a 
screen is called a virtual image. 

Image Formation by Mirrors 

 The characteristics of an image formed by a flat mirror are: (a) The image and object are the 
same distance from the mirror, (b) The image is a virtual image, and (c) The image is situated 
behind the mirror. 

 Image length is half the radius of curvature.  

  
 

 
 

 A convex mirror is a diverging mirror and forms only one type of image, namely a virtual 
image. 

 

 

12.5 Conceptual Questions 

 

1. Using the law of reflection, explain how powder takes the shine off of a person’s nose. 
What is the name of the optical effect? 

2. Explain refraction in terms of a change of wave speed in different media. 

3. In the diagram, label the following: 

a. angle of incidence 

b. angle of refraction 

c. incident ray 

d. refracted ray 

e. normal 
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4. Diffusion by reflection from a rough surface is described in this chapter. Light can also be 
diffused by refraction. Describe how this occurs in a specific situation, such as light 
interacting with crushed ice. 

5. Why is the index of refraction always greater than or equal to 1? 

6. Does the fact that the light flash from lightning reaches you before its sound prove that the 
speed of light is extremely large or simply that it is greater than the speed of sound? Discuss 
how you could use this effect to get an estimate of the speed of light. 

7. Will light change direction toward or away from the perpendicular when it goes from air to 
water? Water to glass? Glass to air? 

8. Explain why an object in water always appears to be at a depth shallower than it actually is? 
Why do people sometimes sustain neck and spinal injuries when diving into unfamiliar 
ponds or waters? 

9. Explain why a person’s legs appear very short when wading in a pool. Justify your 
explanation with a ray diagram showing the path of rays from the feet to the eye of an 
observer who is out of the water. 

10. A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible 
when submerged. Can it be a diamond? Explain. 

11. A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths 
with little absorption. Explain how it can sparkle with flashes of brilliant color when 
illuminated by white light. 

12. It can be argued that a flat piece of glass, such as in a window, is like a lens with an infinite 
focal length. If so, where does it form an image? That is, how are di and do related? 

13. You can often see a reflection when looking at a sheet of glass, particularly if it is darker on 
the other side. Explain why you can often see a double image in such circumstances. 

14. When you focus a camera, you adjust the distance of the lens from the film. If the camera 
lens acts like a thin lens, why can it not be a fixed distance from the film for both near and 
distant objects? 

15. A thin lens has two focal points, one on either side, at equal distances from its center, and 
should behave the same for light entering from either side. Look through your eyeglasses (or 
those of a friend) backward and forward and comment on whether they are thin lenses. 

16. Will the focal length of a lens change when it is submerged in water? Explain. 

17. What are the differences between real and virtual images? How can you tell (by looking) 
whether an image formed by a single lens or mirror is real or virtual? 

18. Can you see a virtual image? Can you photograph one? Can one be projected onto a screen 
with additional lenses or mirrors? Explain your responses. 

19. Is it necessary to project a real image onto a screen for it to exist? 

20. At what distance is an image always located—at do, di, or f  

21. Under what circumstances will an image be located at the focal point of a lens or mirror? 

22. What is meant by a negative magnification? What is meant by a magnification that is less 
than 1 in magnitude? 
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12.6 Problems  

1. Calculate the speed of light through glycerine which has a refractive index of 1.4729. 

2. Use the values given in Table 12.1, and the definition of refractive index to calculate the speed 
of light in water (ice). 

3. Calculate the refractive index of an unknown substance where the speed of light through the 
substance is 1,974×108 m·s−1. Round off your answer to 2 decimal places. Using Table 12.1, 
identify what the unknown substance is. 

4. A ray of light travels from silicon to water. If the ray of light in the water makes an angle of 69o 
to the normal to the surface, what is the angle of incidence in the silicon? 

5. Light travels from a medium with n = 1.25 into a medium of n = 1.34, at an angle of 27 o from 
the normal. 

6. What happens to the speed of the light? Does it increase, decrease, or remain the same? 

7. What happens to the wavelength of the light? Does it increase, decrease, or remain the same? 

8. Does the light bend towards the normal, away from the normal, or not at all? 

9. Light is refracted at the interface between air and an unknown medium. If the angle of 
incidence is 53o and the angle of refraction is 37o, calculate the refractive index of the 
unknown, second medium. 

10. Will light travelling from diamond to silicon ever undergo total internal reflection? 

11. If a fibre optic strand is made from glass, determine the critical angle of the light ray so that the 
ray stays within the fibre optic strand. 

12. A diamond ring is placed in a container full of glycerin. If the critical angle is found to be 37.4o 
and the refractive index of glycerin is given to be 1.47, find the refractive index of diamond. 

13. A keratometer is a device used to measure the curvature of the cornea, particularly for fitting 
contact lenses. Light is reflected from the cornea, which acts like a convex mirror, and the 
keratometer measures the magnification of the image. The smaller the magnification, the 
smaller the radius of curvature of the cornea is. If the light source is 12.0 cm from the cornea 

and the image’s magnification is 0.0320, what is the cornea’s radius of curvature? 

14. What is the power in diopters of a camera lens that has a 50.0 mm focal length? 

15. Your camera’s zoom lens has an adjustable focal length ranging from 80.0 to 200 mm. What is 
its range of powers? 

16. What is the focal length of 1.75 D reading glasses found on the rack in a pharmacy? 

17. You note that your prescription for new eyeglasses is –4.50 D. What will their focal length be? 

18. How far from the lens must the film in a camera be, if the lens has a 35.0 mm focal length and is 
being used to photograph a flower 75.0 cm away? Explicitly show how you follow the steps in 
the Problem-Solving Strategy for lenses. 

19. A certain slide projector has a 100 mm focal length lens. (a) How far away is the screen, if a slide 
is placed 103 mm from the lens and produces a sharp image? (b) If the slide is 24.0 by 36.0 mm, 
what are the dimensions of the image? Explicitly show how you follow the steps in the Problem-
Solving Strategy for lenses. 
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20. A doctor examines a mole with a 15.0 cm focal length magnifying glass held 13.5 cm from the 
mole (a) Where is the image? (b) What is its magnification? (c) How big is the image of a 5.00 
mm diameter mole? 

21. How far from a piece of paper must you hold your father’s 2.25 D reading glasses to try to 
burn a hole in the paper with sunlight? 

22. A camera with a 50.0 mm focal length lens is being used to photograph a person standing 3.00 
m away. (a) How far from the lens must the film be? (b) If the film is 36.0 mm high, what 
fraction of a 1.75 m tall person will fit on it? (c) Discuss how reasonable this seems, based on 
your experience in taking or posing for photographs. 

23. A camera lens used for taking close-up photographs has a focal length of 22.0 mm. The farthest 
it can be placed from the film is 33.0 mm. (a) what is the closest object that can be 
photographed? (b) What is the magnification of this closest object? 

24. Suppose your 50.0 mm focal length camera lens is 51.0 mm away from the film in the camera. 
(a) How far away is an object that is in focus? (b) What is the height of the object if its image is 
2.00 cm high? 

(a) What is the focal length of a magnifying glass that produces a magnification of 3.00 when held 
5.00 cm from an object, such as a rare coin? (b) Calculate the power of the magnifier in 
diopters. (c) Discuss how this power compares to those for store-bought reading glasses 

(typically 1.0 to 4.0 D). Is the magnifier’s power greater, and should it be? it be? 

25. What is the focal length of a makeup mirror that has a power of 1.50 D? 

26. Some telephoto cameras use a mirror rather than a lens. What radius of curvature mirror is 
needed to replace a 800 mm focal length telephoto lens? 

(a) Calculate the focal length of the mirror formed by the shiny back of a spoon that has a 3.00 cm 
radius of curvature. (b) What is its power in diopters? 

27. What is the focal length of a makeup mirror that produces a magnification of 1.50 when a 

person’s face is 12.0 cm away?  

28. A shopper standing 3.00 m from a convex security mirror sees his image with a magnification of 
0.250. (a) Where is his image? (b) What is the focal length of the mirror? (c) What is its radius of 
curvature?  

29. An object 1.50 cm high is held 3.00 cm from a person’s cornea, and its reflected image is 
measured to be 0.167 cm high. (a) What is the magnification? (b) Where is the image? (c) Find 
the radius of curvature of the convex mirror formed by the cornea. (Note that this technique is 
used by optometrists to measure the curvature of the cornea for contact lens fitting. The 
instrument used is called a keratometer, or curve measurer.) 

30. Ray tracing for a flat mirror shows that the image is located a distance behind the mirror equal 
to the distance of the object from the mirror. This is stated di = –do, since this is a negative 
image distance (it is a virtual image). (a) What is the focal length of a flat mirror? (b) What is its 
power? 
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13 Cross-Cutting Application of Physics 

 

13.1 Application in Agriculture  

Learning outcome 

After completing this Chapter, students are expected to: 

 compute water contents in soil 

 explain the working principles of Principle of Motor and Generator 

 describe energy balance in the environment 

 

Why Physics in Agriculture? 

The baffling problem of how plants can grow without any immediate obvious source of food supply 
is still being un-ravelled. Investigations stretching over the last few hundred years have led to an 
understanding of many processes involved in plant growth, but this increased understanding has at 
the same time led us on to ask still further questions, in the way that scientific investigation always 
seems to do. It is not surprising that soil was first thought to be the sole supplier of food for plants. 
How it came to be realized that plants "feed" chiefly by absorbing carbon dioxide as a gas from the 
atmosphere in the presence of light, synthesizing more complex products of higher chemical 
potential energy, is one of the fascinating stories of scientific discovery. 

Energy balance concept 

We may consider that the atmosphere of the planet Earth is a thermodynamic system, the system 
Earth, which receives a rate of heat,   ; primarily from the Sun, and simultaneously radiates heat, 
   in all directions. In addition, because of the nuclear reactions that continuously occur inside the 
core of the planet, an additional quantity of heat power,     ; is convicted by magma to the surface 
of the planet. For this analysis, we may identify the atmospheric layer around the surface of the 
planet of total mass   , with average specific heat capacity,    , and average temperature    .  

For this thermodynamic system, which is schematically depicted in Fig 7.1 below, one may write the 
energy balance equation as follows: 

    

   

  
 ∑ ̇ 

 

  ̇   ̇   ̇    
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Fig 7.1 The Earth’s surface layer as a closed system and its heat balance. 

 

13.1.1 Energy balance in soils 

Application of the First Law of Thermodynamics: Energy Balance 

The First Law of Thermodynamics is one of the fundamental and most general principles of science. 
It defines what is commonly referred to as the energy conservation principle. There are several 
formulations of the First Law, which are pertinent to the various types of systems and processes 
used. All formulations may be summarized by the general expression of energy conservation: energy 
is neither created nor destroyed. It may only be transformed from one form to another. 

For a closed Thermodynamic system, the energy balance is best given in terms of a process leading 
from state 1 to state 2 and may be stated as follows: The heat entering a closed system minus the 
work produced by this system during a process 1–2 is equal to the difference of the total energy of 
the system between these two states.  

This energy conservation law is depicted schematically in Fig. 7.2 

 

 

Fig. 7.2 The first law of thermodynamics as an energy balance 

 

In symbolic form we may write: 

              

 

where the total energy of the system E is defined as the sum of the internal energy, U, the potential 
energy, mgz, the kinetic energy, 1/2 mV 2 and any other forms of energy the system may possess, 
and which may be described by potential functions as for example, electric charge energy, magnetic 
energy, surface tension energy, elastic energy, etc. Thus: 
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13.1.2 Physics of soils  

The Soil as a Reservoir 

The soil acts as a tremendously large reservoir. Considering the many ways by which water may be 
removed from the soil, it must be considered as a very efficient storage medium. Fortunately, water 
can be held by the soil for long periods of time and still be available for plant use when plant growth 
begins. 

Plants use a tremendous amount of water; it is the soil that "holds" this water and "supplies" it to 
the plants. The combined evaporation and transpiration may be as high as 1 cm per day or about 
100,000 kg per ha per day or 214 barrels per acre per day. The average day's evaportranspiration 
during the growing season is about 50,000 kg per ha per day or 107 barrels per acre per day. 

Calculating Soil Water 

Solid particles of varying sizes and shapes make up the "skeleton" of the soil. Between these solid 
particles are interconnected pore spaces that vary continuously in size and shape. In a completely 
dry soil, all of the pore space would be filled with air; and in a completely saturated soil, water (soil 
solution) would occupy all of the pore space. Agricultural soils seldom, if ever, exist in either of these 
extreme conditions.  

The physical properties of the soil, including its ability to store water, are highly related to the 
fraction or percentage of the total soil volume that is occupied by solid and the fraction or 
percentage that is pore space. For plant growth and development, the fraction or percentage of the 
pore space that is occupied by water and the fraction or percentage that contains air is of extreme 
interest (see Fig. 1.1). These concepts can be expressed quantitatively by defining terms such as soil 
porosity and soil water content. Many of the concepts, however, may be expressed in several ways; 
hence, several terms are defined for specifying a particular concept. Water content, for example, 
may be expressed on a volume basis (volume of water per unit volume of moist soil), on a dry mass 
basis (mass of water per unit mass of soil solids), or on a wet mass basis (mass of water per unit 
mass of wet soil). Further, the water contents may be expressed as percentages, but are often given 
as fractions. In converting between mass and volume units, density is used. Consequently, soil 
density terms must also be defined. 

 

 

 

 

 

 

7. 3 Diagram of a cross section of soil, showing solid soil particles (dark 
areas), water films (light areas), and air spaces (white areas) 
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Exercise 

Given: A cube of soil measures 10 x 10 x 10 cm (D = 10 cm, A = 100 cm2) and has a total (wet) mass of 
1460 g, of which 260 g is water. Assume the density of water, Pw, is 1.00 g/cm3 and the soil particle 
density, \rho p, is 2.65 g/cm3 .   

Find: Mass water content, dry mass water percentage, volume water content, volume water 
percentage, depth of water, soil bulk density, soil porosity, water holding capacity, aeration porosity, 
and relative saturation.  

 

13.2 Physics and Industries 

Learning Outcome 

After completing this Chapter, students are expected to: 

 describe the working principles of generator 

 define loading of generator and motor  

 explain how motoring an generating actions go side by side  

 

Consider a straight conductor of active length (the length which is under the influence of the 
magnetic field) l meter is placed over two friction less parallel rails as shown in the figure 7.2.1a. The 
conductor is moving with a constant velocity v meter/second from left to right in the horizontal 
plane. In the presence of a vertical magnetic field directed from top to bottom of strength B Wb/m2, 
a voltage e = Blv will be induced across the ends of the moving conductor. The magnitude of the 
voltage will be constant and the polarity will be as shown in the figure 7.2.1b. In other words the 
moving conductor has become a seat of emf and one can replace it by battery symbol with an emf 
value equal to Blv Volts. 

At no load i.e., (resistance in this case) is connected across the moving conductor, output current 
hence output power is zero. Input power to the generator should also be zero which can also be 
substantiated by the fact that no external force is necessary to move a mass with constant velocity 
over a frictionless surface. The generator is said to be under no load condition. Let us now examine 
what is going to happen if a resistance is connected across the source. Obviously the conductor 
starts delivering a current i = e/R  the moment 
resistance is connected. 

 

7.2.1a Elementary Generator           7.2.1b Top view of figure 7.2.1a 
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However, we know that a current carrying conductor placed in a magnetic field experiences a force 
the direction of which is decided by the left-hand rule. After applying this rule one can easily see that 
the direction of this electromagnetic force will be opposite to the direction of motion i.e., v. As told 
earlier that to move the conductor at constant velocity, no external force hence prime mover is not 
necessary. Under this situation let us assume that a load resistance R is connected across the 
conductor. Without doing any mathematics we can purely from physical reasoning can predict the 
outcome. 

The moment load is connected, the conductor starts experiencing a electromechanical force in the 
opposite direction of the motion. Naturally conductor starts decelerating and eventually comes to a 
stop. The amount of energy dissipated in the load must have come from the kinetic energy stored in 
the conductor.  

13.3 Physics in Health Sciences and Medical Imaging 

Learning Outcome 

After completing this Chapter, students are expected to: 

 list some of medical imaging devices 

 explain the physics principles in x-ray and MRI 

 describe the health effect of radiation 

 identify the advantage and disadvantage of radiation.  

 

Introduction  

Radiation and radioactive materials are part of our environment. The radiation in the environment 
comes from both cosmic radiation that originates in outer space, and from radioactive materials that 
occur naturally in the earth and in our own bodies. Together, these are known as background 
radiation. Everyone is exposed to background radiation daily. In addition, radiation and radioactive 
materials are produced by many human activities. Radiation is produced by x-ray equipment and by 
particle accelerators used in research and medicine. Radioactive materials are produced in nuclear 
reactors and particle accelerators. 

13.3.1 RADIOACTIVITY  

Radioactivity may be defined as spontaneous nuclear transformations in unstable atoms that result 
in the formation of new elements. These transformations are characterized by one of several 
different mechanisms, including alpha-particle emission, beta-particle and positron emission, and 
orbital electron capture. Each of these reactions may or may not be accompanied by gamma 
radiation. Radioactivity and radioactive properties of nuclides are determined by nuclear 
considerations only and are independent of the chemical and physical states of the radionuclide. 
Radioactive properties of atoms, therefore, cannot be changed by any means and are unique to the 
respective radionuclides. The exact mode of radioactive transformation depends on the energy 
available for the transition. The available energy, in turn, depends on two factors: on the particular 
type of nuclear instability that is, whether the neutron-to-proton ratio is too high or too low for the 
particular nuclide under consideration and on the mass–energy relationship among the parent 
nucleus, daughter nucleus, and emitted particle.  
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13.3.2 Health Effects of Radiation 

Biological effects of radiation are typically divided into two categories. The first category consists of 
exposure to high doses of radiation over short periods of time producing acute or short term effects. 
The second category represents exposure to low doses of radiation over an extended period of time 
producing chronic or long term effects. High doses tend to kill cells, while low doses tend to damage 
or change them. High doses can kill so many cells that tissues and organs are damaged. This in turn 
may cause a rapid whole body response often called the Acute Radiation Syndrome (ARS).  

Low doses spread out over long periods of time don’t cause an immediate problem to any body 
organ. The effects of low doses of radiation occur at the level of the cell, and the results may not be 
observed for many years. 

Use of high energy EM waves (Radiation) rapidly increasing in Health care industry. Especially in 
diagnosis with the help of X-ray , computerized tomography (CT), Magnetic resonance imaging (MRI) 
, and Positron emission tomography (PET) have made drastic revolution in diagnosis application with 
minimal non-invasive surgeries. 

13.3.3 Medical Imaging 

X-ray  

X-ray imaging depends on the partial translucence of biological tissue with respect to X-ray photons. 
If a beam of X-rays is directed at the human body, a fraction of the photons will pass through 
without interaction 

 

 

 

 

 

 

 

 

 

Fig7.3 A typical X-ray radiographic geometry. X-ray photons generated by the 
tube are directed at the patient. A fraction of the photons pass directly through 
the body to create a 2-dimensional projection of the exposed anatomy. 
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Positron Emission Tomography — PET 

PET or positron emission tomography is a more recent clinical modification of gamma imaging that 
makes use of the two γ -rays, emitted simultaneously, when a positron annihilates with an electron. 
The tracer introduced into the patient is a positron emitter such as 15O, 11C, 18F, bound to a 
suitable carrier. The radioactive decay produces a positron, e+, with an initial kinetic energy of ~1 
MeV. Although it has a high initial kinetic energy, the charged positron has very strong interactions 
with the surrounding tissue. These interactions transfer the positron kinetic energy to the tissue in a 
series of scattering events that produce a broad spectrum of X-ray energies (bremmstrahlung 
radiation) and a shower of photoelectrons. Typically, the positron travels less than 5 mm in 
biological tissue from its point of emission. The high electron density of biological tissue ensures 
frequent electron/positron encounters; one of these will result in the disappearance or annihilation 
of the two particles, replacing them with two γ-rays. 

The conservation of energy demands that the energy of the two γ-rays is supplied by the total 
energy of the positron and the electron. By the time the annihilation takes place, nearly all the initial 
kinetic energy of the positron has been dissipated in tissue. 

 

Positron Annihilation. The injected tracer is a positron emitter. The emitted positron travels about 5 
mm before annihilating with an electron to form two γ-rays which travel away from the annihilation 
site in opposite directions. Coincidence detection is used to discriminate against spurious 
background counts and define a line of sight. 

MRI 

MRI is short for Magnetic Resonance Imaging, a title giving no hint of precisely which of the many 
possible magnetic quantities might be involved.  

It is the nuclei of the hydrogen atoms in water that are involved. MRI is more transparently 
described as Spatially Localized Nuclear Magnetic Resonance. Each hydrogen nucleus is a proton, 
which carries a tiny compass needle or magnetic moment. When placed in a large magnetic field, 
hydrogen nuclei in the human body can be aligned in one direction and then made to absorb just 
one radio frequency supplied from outside. 
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Under the right conditions, the nuclear compass needles can be made to oscillate, creating another 
radio frequency signal that is easily detectable outside the body. The modulation of that signal, just 
like Virgin Radio or BBC, carries important information about molecular arrangements.  

Ultrasound 

Ultrasound imaging takes us to a larger scale of tissue structure, the boundaries between organs, 
well beyond the atomic and the strictly molecular arrangement. Ultrasound imaging depends 
entirely on changes in the velocity of sound (ultrasound) as we go from one tissue type to another.  

Within human soft tissue sound velocities vary by about 10% either side of 1500 m s − 1 , the speed 
of sound in pure water. Whereas kidney contains 78% water by weight, liver has 75%. This 
difference, although small, is more than enough to cause the sound wave speed to change 
sufficiently across the boundary for quite strong sound reflections to be produced. Ultrasound, like 
MR, is insensitive to atomic type but very sensitive to macroscopic biological structure within soft 
tissue. The technology of ultrasound is very simple to use, cheap to produce and, at imaging power 
levels, almost without any hazard to the patient. For these reasons, ultrasound is second only to X-
ray radiography in dentistry in the frequency of its use. X-rays, ultrasound and then MR between 
them cover a very large fraction of the diagnostic role required of imaging in clinical practice. None 
of these, however, completely satisfactorily addresses metabolic aspects of disease processes 

13.4 Physics and Archaeology 

Learning Outcome 

After completing this Chapter, students are expected to: 

 describe the techniques of radioactive dating 

 state and explain the application of physics in archaeology   

 

An account is given of the three main chronological applications of physics in archaeology: 
radiocarbon dating, thermoluminescence dating and archaeomagnetism. 

The technique of comparing the abundance ratio of a radioactive isotope to a reference isotope to 
determine the age of a material is called radioactive dating. Many isotopes have been studied, 
probing a wide range of time scales. 

The isotope 14C, a radioactive form of carbon, is produced in the upper atmosphere by neutrons 
striking 14N nuclei. The neutron is captured by the 14N nucleus and knocks out a proton. Thus, we 
have a different element, 14C. The isotope, 14C, is transported as 14CO2, absorbed by plants, and 
eaten by animals. If we were to measure the ratio of 14C to 12C today, we would find a value of about 
one 14C atom for each one-trillion 12C atoms. This ratio is the same for all living things–the same for 
humans as for trees or algae. 

Once living things die, they no longer can exchange carbon with the environment. The isotope 14C is 
radioactive, and beta-decays with a half-life of 5,730 years. This means that in 5,730 years, only half 
of the 14C will remain, and after 11,460 years, only one quarter of the 14C remains. Thus, the ratio of 
14C to 12C will change from one in one-trillion at the time of death to one in two trillion 5,730 years 
later and one in four-trillion 11,460 years later. Very accurate measurements of the amount of 14C 
remaining, either by observing the beta decay of 14C or by accelerator mass spectroscopy (using a 
particle accelerator to separate 12C from 14C and counting the amount of each) allows one to date 
the death of the once-living things. 
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Industrial Applications 

The applications of radioisotopes in industry are numerous. Many types of thickness gauges exploit 
the fact that gamma rays are attenuated when they pass through material. By measuring the 
number of gamma rays, the thickness can be determined. This process is used in common industrial 
applications such as: 

1. the automobile industry–to test steel quality in the manufacture of cars and to obtain the 
proper thickness of tin and aluminum 

2. the aircraft industry–to check for flaws in jet engines 

3. construction–to gauge the density of road surfaces and subsurfaces 

4. pipeline companies–to test the strength of welds 

5. oil, gas, and mining companies–to map the contours of test wells and mine bores, and 

6. cable manufacturers–to check ski lift cables for cracks. 

The isotope 241Am is used in many smoke detectors for homes and businesses (as mentioned 
previously), in thickness gauges designed to measure and control metal foil thickness during 
manufacturing processes, to measure levels of toxic lead in dried paint samples, and to help 
determine where oil wells should be drilled. 

 

13.5 Application in Earth and Space Sciences 

Space weather 

Space weather is a term which describes variations in the Sun, solar wind, magnetosphere, 
ionosphere, and thermosphere, which can influence the performance and reliability of a variety of 
space-borne and ground-based technological systems and can also endanger human health and 
safety[Koons et al., 1999]. Space weather has broad, everyday impacts on humans and technology. 
Spacecraft and astronauts are directly exposed to intense radiation that can damage or disable 
systems and sicken or kill astronauts. Radio signals from satellites to ground communication and 
navigation systems, such as the Global Positioning System (GPS), are directly affected by changing 
space environment conditions. What may be surprising is that many ground systems, such as power 
transmission grids and pipelines, and landline communication networks, such as transoceanic fiber-
optic cables, are also susceptible to space weather impacts. Fig a shows the wide variety of systems 
that are affected by space weather, including astronauts and commercial airline crew and 
passengers as well as a host of satellite and radio communication devices. This chapter will describe 
how space weather affects these systems and describe the impacts space weather-related failures 
can have on technology and society. 
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                     Different system affected by space weather.  

Aurora 

The aurora borealis and aurora australis often called the northern lights and southern lights are 
common occurrences at high northern and southern latitudes, less frequent at mid-latitudes, and 
seldom seen near the equator. The typical aurora is caused by collisions between fast-moving 
electrons from space with the oxygen and nitrogen in Earth’s upper atmosphere. The electrons 
which come from the Earth’s magnetosphere, the region of space controlled by Earth’s mag-
neticfield transfer their energy to the oxygen and nitrogen atoms and molecules, making them 
“excited”. As the gases return to their normal state, they emit photons, small bursts of energy in the 
form of light. When a large number of electrons come from the magnetosphere to bombard the 
atmosphere, the oxygen and nitrogen can emit enough light for the eye to detect, giving us beautiful 
auroral displays. 

  

 

13.5.1 Satellite Orbits  

We have become dependent on space technology, using satellites for a wide range of Earth-
observing (such as weather) and communication (data, voice, television, and radio) purposes. 
Satellite technology is finding its way into a number of everyday activities. You probably used a 
satellite today. You did if you watched cable or satellite TV, listened to a nationally syndicated radio 
program, tracked a package being delivered to you by one of the major courier services, or used a 
credit card at a gas station pump or at a major retail store. To support these services, there are 
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hundreds of satellites orbiting Earth. These satellites are in a variety of orbits, which means that 
each satellite has a unique path around Earth. 

Satellite orbits are loosely grouped into four categories: low earth orbit (LEO), medium earth orbit 
(MEO), geosynchronous orbit (GEO), and high earth orbit (HEO). Figure below shows the 
relationships among the different orbits. The corresponding orbital altitudes (above the earth’s 
surface) are      

LEO, 500–900 km 

MEO, 5000–12,000 km 

GEO, 36,000 km* 

HEO, 50,000 km 

These definitions are not universal and may be applied rather casually. HEO satellites have an 
elliptical orbit, which may be very near the earth at its low. 

 

 

 

 

 

 

 

                                Satellite orbits 

 

13.5.2 Application in Power Generation 

Geothermal Energy 

The term geothermal is a composition of two Greek words: geo, meaning earth, and thermal, 
meaning heat. Combined, geothermal means heat generated from the earth.  

Earth’s center is made of molten iron, located at about 6430 km from its crust. Core estimated 
temperature is about 5000 oC, the heat would be conducts outward and heats up the outer layers of 
rock, referred to as the mantel.  When mantel melts and spewed out of the crust, it is called magma. 

Geothermal energy is energy created by the heat of the Earth.  Under the Earth’s crust lies a layer of 
thick, hot rock with occasional pockets of water. This water sometimes seeps up to the surface in the 
form of hot springs.  Even where the water does not travel naturally to the Earth’s surface, it is 
sometimes possible to reach it by drilling.  This hot water can be used as a virtually free source of 
energy either directly as hot water, steam, or heat or as a means of generating power.   
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According to estimates from field studies, Ethiopia has the potential to generate up to 10,000 MW of 
electric power from geothermal sources. However, fifty years of geothermal exploration efforts have 
only resulted in ten companies receiving development licenses so far. Two of these licenses were 
given to Ethiopian Electric Power (EEP) for the resources at Aluto Langano and Alalobat at Tendaho 
in the Oromia and Afar regional states.  

A geological survey of Ethiopia has identified 24 sites across the Rift Valley that have potential for 
generating geothermal energy. 

Hydro-power 

Hydroelectric power captures the energy released from falling water. In the most simplistic terms, 
water falls due to gravity, which causes kinetic energy to be converted into mechanical energy, 
which in turn can be converted into a usable form of electrical energy. Hydropower is often used to 
make electricity, usually at dams. The amount of energy in water depends on its flow or fall. 

Hydroelectric power potential 

Hydroelectric power plant potential consists of two parameters, namely, the amount of water flow 
per unit of time and the vertical height, or head, that water can be made to fall. In some instances, 
water head may be attributed to natural site topography, or it may be created artificially by 
constructing dams. Water accumulation in a dam depends on the intensity, distribution, and 
duration of rainfall, as well as direct evaporation, transpiration, ground infiltration, and the field 
moisture capacity of the basin or reservoir soil. A simple formula for approximating electric power 
production at a hydroelectric plant is:       

                                     

Where 

   is power in watts, 

   is the density of water ( 1000 kg/m3 ), 

   is height in meters, 

         is flow rate in cubic meters per second, 

   is acceleration due to gravity of 9.8 m/s2  

 η is a coefficient of efficiency ranging from 0 to 1.  

 

Efficiency is often higher (that is, closer to 1) with larger and more modern turbines. 

 

 

 Environmental impacts of hydroelectric power  

Hydropower is better than burning coal, oil or natural gas to produce electricity, as it does not 
contribute to global warming or acid rain do not result in the risks of radioactive contamination 
associated with nuclear power plants. 

A few recent studies of large reservoirs created behind hydro dams have suggested that decaying 
vegetation, submerged by flooding, may give off quantities of greenhouse gases equivalent to those 
from other sources of electricity. If this turns out to be true, hydroelectric facilities such as the James 
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Bay project in Quebec that flood large areas of land might be significant contributors to global 
warming. Run of the river hydro plants without dams and reservoirs would not be a source of these 
greenhouse gases. 

 

13.6 Conceptual Questions 

1. Describe how an X-ray image of the bones in the hand is produced 

2. Why is hydrogen the most commonly targeted element in the magnetic resonance imaging 
process? 

3. Why is hydrogen the most commonly targeted element in the magnetic resonance imaging 
process? 

4. Explain how surface temperatures and chemical compositions of stars can be determined from 
their spectra  

5. As a soil drains, is it true that small diameter pores drain before larger diameter pores? Explain. 

6. For a given soil, is the bulk density a constant? Explain. 

7. Explain why soil water would move from a drier to a wetter soil. Or could it? 

8. If water exist in soil as films only (that is, water is only coating particle surfaces), explain why 
you would expect more water in a clay soil than in a sand 

9. Which statements are correct about solar activity? 

A. Solar flares are huge eruptions from the Sun, emitting large amounts of energetic particles 
and intense radiation. 

B. The number of sunspots varies with a period for approximately 11 years (or has at least done 
so for the last 250 years). 

C. The general level of activity follows the same 11-year period as the sunspots. 

10. Which statements are correct about solar wind? 

A. The electrons generated in the nuclear processes in the sun cause a net negative charge on 
the sun, repelling electrons from the solar surface and creating the solar wind. 

B. If it were not for the ionizing radiation from the sun, the ions and electrons in the solar wind 
would rapidly recombine. 

C. The solar wind sometimes reaches as far as Earth’s orbit, but usually disappears well within 
the orbit of Venus. 

11. Which statements are correct about a spacecraft? 

A. Rockets need something to push on, and therefore do not work in vacuum, only inside an 
atmosphere. 

B. The important parameter for launching a rocket is the total impulse (the time integral of the 
force): a small force applied during a long time is just as efficient for launching a rocket as a 
big force during a short time. 

C. The basic shape of any satellite orbit is an ellipse, though there can be perturbations 
resulting from non-ideal effects like the non-spherical distribution of mass on the Earth, the 
gravitational influence of the moon, and air friction. 
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12. Which statements are correct about aurora? 

A. The most common colour of the aurora is red. 

B. The auroral light is emitted when atoms (sometimes also molecules and/or ions) in the 
upper atmosphere de-excite after having been excited by electrons in the keV range coming 
down along the magnetic field lines from the magnetosphere. 

C. The auroral light is mainly emitted at altitudes between 100 and 200 km 

 

13.7 Problems 

1. A bucket (20 cm diameter by 10 cm depth) contains a loam soil with a particle density of 2.7 
g/cm 3 and a porosity of 40%. The soil is at a volumetric water content of 0.10. If the bucket 
receives 2.0 cm of rainfall, (a) Determine the soil water content after the rainfall (you may 
assume that the rainfall mixes uniformly throughout the soil volume). (b) Determine the 
weight of the bucket of soil after the rainfall (you may disregard the weight of the empty 
bucket. 

2. A cylinder (4 cm diameter by 10 cm long) contains 210.0 g of oven-dry mineral soil. Estimate 
the grams of water required to fully saturate the soil in the cylinder. 

3. A long capillary tube (radius=0.0015 cm) with a semi-permeable membrane on the lower end 
is oriented vertically and placed in a dilute sodium chloride solution at T = 20 0 C. If the height 
of rise of water in the tube is 20 cm, what is the solute potential (in head units) of the 
solution? State assumptions. 
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